Ermakov's Superintegrable Toy and Nonlocal Symmetries
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient, and the algebra is unsuitable for the complete specification of the system...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2005 |
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209342 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Ermakov's Superintegrable Toy and Nonlocal Symmetries / P.G.L. Leach, A. Karasu (Kalkanli), M.C. Nucci, K. Andiopoulos // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 50 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!