Second Order Superintegrable Systems in Three Dimensions
A classical (or quantum) superintegrable system on an n-dimensional Riemannian manifold is an integrable Hamiltonian system with a potential that admits 2n-1 functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the mo...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2005 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2005
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/209345 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Second Order Superintegrable Systems in Three Dimensions / W. Miller // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 39 назв. — англ. |