Second Order Superintegrable Systems in Three Dimensions

A classical (or quantum) superintegrable system on an n-dimensional Riemannian manifold is an integrable Hamiltonian system with a potential that admits 2n-1 functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the mo...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2005
Автор: Miller, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209345
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Second Order Superintegrable Systems in Three Dimensions / W. Miller // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Схожі ресурси