A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice

In this paper, we propose a new algorithm for obtaining the rational integrals of the full Kostant-Toda lattice. This new approach is based on a reduction of a bi-Hamiltonian system on gl(n, R). This system was obtained by reducing the space of maps from Zn to GL(n, R) endowed with a structure of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2005
Hauptverfasser: Damianou, P.A., Magri, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209350
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice / P.A. Damianou, F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209350
record_format dspace
spelling Damianou, P.A.
Magri, F.
2025-11-19T12:28:08Z
2005
A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice / P.A. Damianou, F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 25 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37J35; 70H06
https://nasplib.isofts.kiev.ua/handle/123456789/209350
https://doi.org/10.3842/SIGMA.2005.010
In this paper, we propose a new algorithm for obtaining the rational integrals of the full Kostant-Toda lattice. This new approach is based on a reduction of a bi-Hamiltonian system on gl(n, R). This system was obtained by reducing the space of maps from Zn to GL(n, R) endowed with a structure of a pair of Lie-algebroids.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
spellingShingle A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
Damianou, P.A.
Magri, F.
title_short A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
title_full A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
title_fullStr A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
title_full_unstemmed A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice
title_sort gentle (without chopping) approach to the full kostant-toda lattice
author Damianou, P.A.
Magri, F.
author_facet Damianou, P.A.
Magri, F.
publishDate 2005
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper, we propose a new algorithm for obtaining the rational integrals of the full Kostant-Toda lattice. This new approach is based on a reduction of a bi-Hamiltonian system on gl(n, R). This system was obtained by reducing the space of maps from Zn to GL(n, R) endowed with a structure of a pair of Lie-algebroids.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209350
citation_txt A Gentle (without Chopping) Approach to the Full Kostant-Toda Lattice / P.A. Damianou, F. Magri // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT damianoupa agentlewithoutchoppingapproachtothefullkostanttodalattice
AT magrif agentlewithoutchoppingapproachtothefullkostanttodalattice
AT damianoupa gentlewithoutchoppingapproachtothefullkostanttodalattice
AT magrif gentlewithoutchoppingapproachtothefullkostanttodalattice
first_indexed 2025-12-07T17:13:48Z
last_indexed 2025-12-07T17:13:48Z
_version_ 1850886066763988992