Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform

Spectra of the position and momentum operators of the Biedenharn-Macfarlane q-oscillator (with the main relation aa⁺ - qa⁺a = 1) are studied when q > 1. These operators are symmetric but not self-adjoint. They have a one-parameter family of self-adjoint extensions. These extensions are derived ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2005
1. Verfasser: Klimyk, A.U.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209352
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform / A.U. Klimyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209352
record_format dspace
spelling Klimyk, A.U.
2025-11-19T12:29:02Z
2005
Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform / A.U. Klimyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 22 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 47B15; 81Q10; 81S05
https://nasplib.isofts.kiev.ua/handle/123456789/209352
https://doi.org/10.3842/SIGMA.2005.008
Spectra of the position and momentum operators of the Biedenharn-Macfarlane q-oscillator (with the main relation aa⁺ - qa⁺a = 1) are studied when q > 1. These operators are symmetric but not self-adjoint. They have a one-parameter family of self-adjoint extensions. These extensions are derived explicitly. Their spectra and eigenfunctions are given. Spectra of different extensions do not intersect. The results show that the creation and annihilation operators a⁺ and a of the q-oscillator for q > 1 cannot determine a physical system without further, more precise definition. In order to determine a physical system, we have to choose appropriate self-adjoint extensions of the position and momentum operators.
This research was partially supported by Grant 10.01/015 of the State Foundation of Fundamental Research of Ukraine. Discussions with N. Atakishiyev, I. Burban, and O. Gavrylyk are gratefully acknowledged.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
spellingShingle Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
Klimyk, A.U.
title_short Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
title_full Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
title_fullStr Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
title_full_unstemmed Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform
title_sort spectra of observables in the q-oscillator and q-analogue of the fourier transform
author Klimyk, A.U.
author_facet Klimyk, A.U.
publishDate 2005
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Spectra of the position and momentum operators of the Biedenharn-Macfarlane q-oscillator (with the main relation aa⁺ - qa⁺a = 1) are studied when q > 1. These operators are symmetric but not self-adjoint. They have a one-parameter family of self-adjoint extensions. These extensions are derived explicitly. Their spectra and eigenfunctions are given. Spectra of different extensions do not intersect. The results show that the creation and annihilation operators a⁺ and a of the q-oscillator for q > 1 cannot determine a physical system without further, more precise definition. In order to determine a physical system, we have to choose appropriate self-adjoint extensions of the position and momentum operators.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209352
citation_txt Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform / A.U. Klimyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT klimykau spectraofobservablesintheqoscillatorandqanalogueofthefouriertransform
first_indexed 2025-12-01T12:18:04Z
last_indexed 2025-12-01T12:18:04Z
_version_ 1850886067884916736