Exact Solutions and Symmetry Operators for the Nonlocal Gross-Pitaevskii Equation with Quadratic Potential
The complex WKB-Maslov method is used to consider an approach to the semiclassical integrability of the multidimensional Gross-Pitaevskii equation with an external field and nonlocal nonlinearity previously developed by the authors. Although the WKB-Maslov method is approximate in essence, it leads...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2005 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209353 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Exact Solutions and Symmetry Operators for the Nonlocal Gross-Pitaevskii Equation with Quadratic Potential / A. Shapovalov, A. Trifonov, A. Lisok // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The complex WKB-Maslov method is used to consider an approach to the semiclassical integrability of the multidimensional Gross-Pitaevskii equation with an external field and nonlocal nonlinearity previously developed by the authors. Although the WKB-Maslov method is approximate in essence, it leads to exact solution of the Gross-Pitaevskii equation with an external and a nonlocal quadratic potential. For this equation, an exact solution of the Cauchy problem is constructed in the class of trajectory concentrated functions. A nonlinear evolution operator is found in explicit form, and symmetry operators (mapping a solution of the equation into another solution) are obtained for the equation under consideration. General constructions are illustrated by examples.
|
|---|---|
| ISSN: | 1815-0659 |