On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to "lift" a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-produ...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209435 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies / A. Czarnecki // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209435 |
|---|---|
| record_format |
dspace |
| spelling |
Czarnecki, A. 2025-11-21T18:49:34Z 2018 On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies / A. Czarnecki // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C12; 57R18 arXiv: 1703.08279 https://nasplib.isofts.kiev.ua/handle/123456789/209435 https://doi.org/10.3842/SIGMA.2018.029 We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to "lift" a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-product of a failed attempt to prove certain finiteness theorems for basic symplectic cohomologies. In the last part of the paper, we include a valid proof. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies |
| spellingShingle |
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies Czarnecki, A. |
| title_short |
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies |
| title_full |
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies |
| title_fullStr |
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies |
| title_full_unstemmed |
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies |
| title_sort |
on the symplectic structures in frame bundles and the finite dimension of basic symplectic cohomologies |
| author |
Czarnecki, A. |
| author_facet |
Czarnecki, A. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to "lift" a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-product of a failed attempt to prove certain finiteness theorems for basic symplectic cohomologies. In the last part of the paper, we include a valid proof.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209435 |
| citation_txt |
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies / A. Czarnecki // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT czarneckia onthesymplecticstructuresinframebundlesandthefinitedimensionofbasicsymplecticcohomologies |
| first_indexed |
2025-12-07T19:49:56Z |
| last_indexed |
2025-12-07T19:49:56Z |
| _version_ |
1850886154834935808 |