On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies

We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to "lift" a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-produ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Czarnecki, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209435
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies / A. Czarnecki // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209435
record_format dspace
spelling Czarnecki, A.
2025-11-21T18:49:34Z
2018
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies / A. Czarnecki // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C12; 57R18
arXiv: 1703.08279
https://nasplib.isofts.kiev.ua/handle/123456789/209435
https://doi.org/10.3842/SIGMA.2018.029
We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to "lift" a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-product of a failed attempt to prove certain finiteness theorems for basic symplectic cohomologies. In the last part of the paper, we include a valid proof.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
spellingShingle On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
Czarnecki, A.
title_short On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
title_full On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
title_fullStr On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
title_full_unstemmed On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
title_sort on the symplectic structures in frame bundles and the finite dimension of basic symplectic cohomologies
author Czarnecki, A.
author_facet Czarnecki, A.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to "lift" a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-product of a failed attempt to prove certain finiteness theorems for basic symplectic cohomologies. In the last part of the paper, we include a valid proof.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209435
citation_txt On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies / A. Czarnecki // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT czarneckia onthesymplecticstructuresinframebundlesandthefinitedimensionofbasicsymplecticcohomologies
first_indexed 2025-12-07T19:49:56Z
last_indexed 2025-12-07T19:49:56Z
_version_ 1850886154834935808