One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means

Available proofs of the result of the type "at least one of the odd zeta values ζ(5), ζ(7),…, ζ(s) is irrational" make use of the saddle-point method or of linear independence criteria, or both. These two remarkable techniques are, however, counted as highly non-elementary, therefore leavi...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Zudilin W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209436
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means / W. Zudilin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209436
record_format dspace
spelling Zudilin W.
2025-11-21T18:50:20Z
2018
One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means / W. Zudilin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 10 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 11J72; 11M06; 33C20
arXiv: 1801.09895
https://nasplib.isofts.kiev.ua/handle/123456789/209436
https://doi.org/10.3842/SIGMA.2018.028
Available proofs of the result of the type "at least one of the odd zeta values ζ(5), ζ(7),…, ζ(s) is irrational" make use of the saddle-point method or of linear independence criteria, or both. These two remarkable techniques are, however, counted as highly non-elementary, therefore leaving the partial irrationality result inaccessible to the general mathematics audience in all its glory. Here we modify the original construction of linear forms in odd zeta values to produce, for the first time, an elementary proof of such a result — a proof whose technical ingredients are limited to the prime number theorem and Stirling's approximation formula for the factorial.
I thank Stéphane Fischler, Tanguy Rivoal, Johannes Sprang, and the anonymous referees for their feedback on the manuscript.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means
spellingShingle One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means
Zudilin W.
title_short One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means
title_full One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means
title_fullStr One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means
title_full_unstemmed One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means
title_sort one of the odd zeta values from ζ(5) to ζ(25) is irrational. by elementary means
author Zudilin W.
author_facet Zudilin W.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Available proofs of the result of the type "at least one of the odd zeta values ζ(5), ζ(7),…, ζ(s) is irrational" make use of the saddle-point method or of linear independence criteria, or both. These two remarkable techniques are, however, counted as highly non-elementary, therefore leaving the partial irrationality result inaccessible to the general mathematics audience in all its glory. Here we modify the original construction of linear forms in odd zeta values to produce, for the first time, an elementary proof of such a result — a proof whose technical ingredients are limited to the prime number theorem and Stirling's approximation formula for the factorial.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209436
citation_txt One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means / W. Zudilin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT zudilinw oneoftheoddzetavaluesfromζ5toζ25isirrationalbyelementarymeans
first_indexed 2025-11-24T07:13:48Z
last_indexed 2025-11-24T07:13:48Z
_version_ 1850885965789265920