Hopf Algebras which Factorize through the Taft Algebra Tm²(q) and the Group Hopf Algebra K[Cn]
We completely describe by generators and relations and classify all Hopf algebras which factorize through the Taft algebra Tm²(q) and the group Hopf algebra K[Cn]: they are nm²-dimensional quantum groups Tωnm²(q) associated to an n-th root of unity ω. Furthermore, using Dirichlet's prime number...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209437 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Hopf Algebras which Factorize through the Taft Algebra Tm²(q) and the Group Hopf Algebra K[Cn] / A.-L. Agore // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We completely describe by generators and relations and classify all Hopf algebras which factorize through the Taft algebra Tm²(q) and the group Hopf algebra K[Cn]: they are nm²-dimensional quantum groups Tωnm²(q) associated to an n-th root of unity ω. Furthermore, using Dirichlet's prime number theorem, we are able to count the number of isomorphism types of such Hopf algebras. More precisely, if d=gcd(m,ν(n)) and ν(n)/d=p₁α₁⋯prαr is the prime decomposition of ν(n)/d then the number of types of Hopf algebras that factorize through Tm²(q) and K[Cn] is equal to (α1+1)(α2+1)⋯(αr+1), where ν(n) is the order of the group of n-th roots of unity in K. As a consequence of our approach, the automorphism groups of these Hopf algebras are described as well.
|
|---|---|
| ISSN: | 1815-0659 |