Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures
In our earlier article [Lett. Math. Phys. 107 (2017), 475-503], we explicitly described a topological Hopf algebroid playing the role of the noncommutative phase space of Lie algebra type. Ping Xu has shown that every deformation quantization leads to a Drinfeld twist of the associative bialgebroid...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2018
|
| Series: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/209438 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures / S. Meljanac, Z. Škoda // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ. |