Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems

We list An, Cn, and Dn extensions of the elliptic WP Bailey transform and lemma, given for n=1 by Andrews and Spiridonov. Our work requires multiple series extensions of Frenkel and Turaev's terminating, balanced, and very-well-poised ₁₀V₉ elliptic hypergeometric summation formula due to Roseng...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Authors: Bhatnagar, G., Schlosser, M.J.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209439
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems / G. Bhatnagar, M.J. Schlosser // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 52 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We list An, Cn, and Dn extensions of the elliptic WP Bailey transform and lemma, given for n=1 by Andrews and Spiridonov. Our work requires multiple series extensions of Frenkel and Turaev's terminating, balanced, and very-well-poised ₁₀V₉ elliptic hypergeometric summation formula due to Rosengren and Rosengren and Schlosser. In our study, we discover two new An ₁₂V₁₁ transformation formulas that reduce to two new An extensions of Bailey's 10ϕ9 transformation formulas when the nome p is 0, and two multiple series extensions of Frenkel and Turaev's sum.
ISSN:1815-0659