Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems

We list An, Cn, and Dn extensions of the elliptic WP Bailey transform and lemma, given for n=1 by Andrews and Spiridonov. Our work requires multiple series extensions of Frenkel and Turaev's terminating, balanced, and very-well-poised ₁₀V₉ elliptic hypergeometric summation formula due to Roseng...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Bhatnagar, G., Schlosser, M.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209439
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems / G. Bhatnagar, M.J. Schlosser // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 52 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209439
record_format dspace
spelling Bhatnagar, G.
Schlosser, M.J.
2025-11-21T18:52:47Z
2018
Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems / G. Bhatnagar, M.J. Schlosser // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 52 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D67
arXiv: 1704.00020
https://nasplib.isofts.kiev.ua/handle/123456789/209439
https://doi.org/10.3842/SIGMA.2018.025
We list An, Cn, and Dn extensions of the elliptic WP Bailey transform and lemma, given for n=1 by Andrews and Spiridonov. Our work requires multiple series extensions of Frenkel and Turaev's terminating, balanced, and very-well-poised ₁₀V₉ elliptic hypergeometric summation formula due to Rosengren and Rosengren and Schlosser. In our study, we discover two new An ₁₂V₁₁ transformation formulas that reduce to two new An extensions of Bailey's 10ϕ9 transformation formulas when the nome p is 0, and two multiple series extensions of Frenkel and Turaev's sum.
The first author thanks Hjalmar Rosengren and the organizers of OPSF-S6 for the series of lectures [32] on this subject. We thank Ole Warnaar for showing his notes [48] and much encouragement, Slava Spiridonov for some comments, and Zhizheng Zhang and Junli Huang for sending us their preprint [51]. We thank the anonymous referees for many insightful suggestions. We thank the Erwin Schrödinger Institute for its workshop on Elliptic hypergeometric functions in combinatorics, integrable systems, and physics held in Vienna in March 2017, where we benefited from discussions with other participants. Finally, the research of both authors was supported by a grant of the Austrian Science Fund (FWF): F 50-N15.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
spellingShingle Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
Bhatnagar, G.
Schlosser, M.J.
title_short Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
title_full Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
title_fullStr Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
title_full_unstemmed Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
title_sort elliptic well-poised bailey transforms and lemmas on root systems
author Bhatnagar, G.
Schlosser, M.J.
author_facet Bhatnagar, G.
Schlosser, M.J.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We list An, Cn, and Dn extensions of the elliptic WP Bailey transform and lemma, given for n=1 by Andrews and Spiridonov. Our work requires multiple series extensions of Frenkel and Turaev's terminating, balanced, and very-well-poised ₁₀V₉ elliptic hypergeometric summation formula due to Rosengren and Rosengren and Schlosser. In our study, we discover two new An ₁₂V₁₁ transformation formulas that reduce to two new An extensions of Bailey's 10ϕ9 transformation formulas when the nome p is 0, and two multiple series extensions of Frenkel and Turaev's sum.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209439
citation_txt Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems / G. Bhatnagar, M.J. Schlosser // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 52 назв. — англ.
work_keys_str_mv AT bhatnagarg ellipticwellpoisedbaileytransformsandlemmasonrootsystems
AT schlossermj ellipticwellpoisedbaileytransformsandlemmasonrootsystems
first_indexed 2025-12-07T18:12:50Z
last_indexed 2025-12-07T18:12:50Z
_version_ 1850886072462999552