Fourier Series of Gegenbauer-Sobolev Polynomials
We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209440 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Fourier Series of Gegenbauer-Sobolev Polynomials / Ó. Ciaurri, J. Mínguez // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209440 |
|---|---|
| record_format |
dspace |
| spelling |
Ciaurri, Ó. Mínguez, J. 2025-11-21T18:53:34Z 2018 Fourier Series of Gegenbauer-Sobolev Polynomials / Ó. Ciaurri, J. Mínguez // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42A20; 33C47 arXiv: 1704.01597 https://nasplib.isofts.kiev.ua/handle/123456789/209440 https://doi.org/10.3842/SIGMA.2018.024 We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators. The authors are highly indebted to professor J.M. Rodríguez for his helpful comments about the proof of Theorem 1.2. The authors were supported by a grant MTM2015-65888-C04-4-P from the Spanish Government. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Fourier Series of Gegenbauer-Sobolev Polynomials Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Fourier Series of Gegenbauer-Sobolev Polynomials |
| spellingShingle |
Fourier Series of Gegenbauer-Sobolev Polynomials Ciaurri, Ó. Mínguez, J. |
| title_short |
Fourier Series of Gegenbauer-Sobolev Polynomials |
| title_full |
Fourier Series of Gegenbauer-Sobolev Polynomials |
| title_fullStr |
Fourier Series of Gegenbauer-Sobolev Polynomials |
| title_full_unstemmed |
Fourier Series of Gegenbauer-Sobolev Polynomials |
| title_sort |
fourier series of gegenbauer-sobolev polynomials |
| author |
Ciaurri, Ó. Mínguez, J. |
| author_facet |
Ciaurri, Ó. Mínguez, J. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209440 |
| citation_txt |
Fourier Series of Gegenbauer-Sobolev Polynomials / Ó. Ciaurri, J. Mínguez // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT ciaurrio fourierseriesofgegenbauersobolevpolynomials AT minguezj fourierseriesofgegenbauersobolevpolynomials |
| first_indexed |
2025-12-07T17:30:42Z |
| last_indexed |
2025-12-07T17:30:42Z |
| _version_ |
1850886073383649280 |