Fourier Series of Gegenbauer-Sobolev Polynomials

We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Ciaurri, Ó., Mínguez, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209440
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Fourier Series of Gegenbauer-Sobolev Polynomials / Ó. Ciaurri, J. Mínguez // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209440
record_format dspace
spelling Ciaurri, Ó.
Mínguez, J.
2025-11-21T18:53:34Z
2018
Fourier Series of Gegenbauer-Sobolev Polynomials / Ó. Ciaurri, J. Mínguez // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 42A20; 33C47
arXiv: 1704.01597
https://nasplib.isofts.kiev.ua/handle/123456789/209440
https://doi.org/10.3842/SIGMA.2018.024
We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
The authors are highly indebted to professor J.M. Rodríguez for his helpful comments about the proof of Theorem 1.2. The authors were supported by a grant MTM2015-65888-C04-4-P from the Spanish Government.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Fourier Series of Gegenbauer-Sobolev Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Fourier Series of Gegenbauer-Sobolev Polynomials
spellingShingle Fourier Series of Gegenbauer-Sobolev Polynomials
Ciaurri, Ó.
Mínguez, J.
title_short Fourier Series of Gegenbauer-Sobolev Polynomials
title_full Fourier Series of Gegenbauer-Sobolev Polynomials
title_fullStr Fourier Series of Gegenbauer-Sobolev Polynomials
title_full_unstemmed Fourier Series of Gegenbauer-Sobolev Polynomials
title_sort fourier series of gegenbauer-sobolev polynomials
author Ciaurri, Ó.
Mínguez, J.
author_facet Ciaurri, Ó.
Mínguez, J.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209440
citation_txt Fourier Series of Gegenbauer-Sobolev Polynomials / Ó. Ciaurri, J. Mínguez // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT ciaurrio fourierseriesofgegenbauersobolevpolynomials
AT minguezj fourierseriesofgegenbauersobolevpolynomials
first_indexed 2025-12-07T17:30:42Z
last_indexed 2025-12-07T17:30:42Z
_version_ 1850886073383649280