On the Linearization Covering Technique and Its Application to Integrable Nonlinear Differential Systems
In this letter, I analyze a covering jet manifold scheme, its relation to the invariant theory of the associated vector fields, and applications to the Lax-Sato-type integrability of nonlinear dispersionless differential systems. The related contact geometry linearization covering scheme is also dis...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209441 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems / A.K. Prykarpatski // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In this letter, I analyze a covering jet manifold scheme, its relation to the invariant theory of the associated vector fields, and applications to the Lax-Sato-type integrability of nonlinear dispersionless differential systems. The related contact geometry linearization covering scheme is also discussed. The devised techniques are demonstrated for such nonlinear Lax-Sato integrable equations as Gibbons-Tsarev, ABC, Manakov-Santini, and the differential Toda singular manifold equations.
|
|---|---|
| ISSN: | 1815-0659 |