Poisson Algebras and 3D Superintegrable Hamiltonian Systems
Using a Poisson bracket representation, in 3D, of the Lie algebra sl(2), we first use highest weight representations to embed this into larger Lie algebras. These are then interpreted as symmetry and conformal symmetry algebras of the "kinetic energy", related to the quadratic Casimir func...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209442 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Poisson Algebras and 3D Superintegrable Hamiltonian Systems / A.P. Fordy, Q. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!