Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields

We present applications of the notion of isomorphic vector fields to the study of nonlinear stability of relative equilibria. Isomorphic vector fields were introduced by Hepworth [Theory Appl. Categ. 22 (2009), 542-587] in his study of vector fields on differentiable stacks. Here, we argue in favor...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Klajbor-Goderich, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209443
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields / S. Klajbor-Goderich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209443
record_format dspace
spelling Klajbor-Goderich, S.
2025-11-21T18:56:08Z
2018
Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields / S. Klajbor-Goderich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J25; 57R25; 37J15; 53D20
arXiv: 1707.02828
https://nasplib.isofts.kiev.ua/handle/123456789/209443
https://doi.org/10.3842/SIGMA.2018.021
We present applications of the notion of isomorphic vector fields to the study of nonlinear stability of relative equilibria. Isomorphic vector fields were introduced by Hepworth [Theory Appl. Categ. 22 (2009), 542-587] in his study of vector fields on differentiable stacks. Here, we argue in favor of the usefulness of replacing an equivariant vector field by an isomorphic one to study the nonlinear stability of relative equilibria. In particular, we use this idea to obtain a criterion for nonlinear stability. As an application, we offer an alternative proof of Montaldi and Rodríguez-Olmos's criterion [arXiv:1509.04961] for the stability of Hamiltonian relative equilibria.
The author would like to thank Eugene Lerman for guiding this project, for his enduring patience with my many questions, and for the many interesting conversations on the subject. The author would also like to express their gratitude to the anonymous referee for their helpful comments and careful review of the preprint of this paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
spellingShingle Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
Klajbor-Goderich, S.
title_short Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
title_full Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
title_fullStr Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
title_full_unstemmed Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
title_sort nonlinear stability of relative equilibria and isomorphic vector fields
author Klajbor-Goderich, S.
author_facet Klajbor-Goderich, S.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present applications of the notion of isomorphic vector fields to the study of nonlinear stability of relative equilibria. Isomorphic vector fields were introduced by Hepworth [Theory Appl. Categ. 22 (2009), 542-587] in his study of vector fields on differentiable stacks. Here, we argue in favor of the usefulness of replacing an equivariant vector field by an isomorphic one to study the nonlinear stability of relative equilibria. In particular, we use this idea to obtain a criterion for nonlinear stability. As an application, we offer an alternative proof of Montaldi and Rodríguez-Olmos's criterion [arXiv:1509.04961] for the stability of Hamiltonian relative equilibria.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209443
citation_txt Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields / S. Klajbor-Goderich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT klajborgoderichs nonlinearstabilityofrelativeequilibriaandisomorphicvectorfields
first_indexed 2025-12-07T16:44:07Z
last_indexed 2025-12-07T16:44:07Z
_version_ 1850886073383649281