Special Solutions of Bi-Riccati Delay-Differential Equations
Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations, we consider their elliptic and solito...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209444 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Special Solutions of Bi-Riccati Delay-Differential Equations / B.K. Berntson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209444 |
|---|---|
| record_format |
dspace |
| spelling |
Berntson, B.K. 2025-11-21T18:58:29Z 2018 Special Solutions of Bi-Riccati Delay-Differential Equations / B.K. Berntson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K10; 34K05; 37K40 arXiv: 1710.06091 https://nasplib.isofts.kiev.ua/handle/123456789/209444 https://doi.org/10.3842/SIGMA.2018.020 Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations, we consider their elliptic and soliton-type solutions. Using Hirota's bilinear method, we find that two of our equations possess three-soliton-type solutions. The author wishes to thank Rod Halburd for useful discussions and the anonymous referees for comments and suggestions that substantially improved the presentation of the paper. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Special Solutions of Bi-Riccati Delay-Differential Equations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Special Solutions of Bi-Riccati Delay-Differential Equations |
| spellingShingle |
Special Solutions of Bi-Riccati Delay-Differential Equations Berntson, B.K. |
| title_short |
Special Solutions of Bi-Riccati Delay-Differential Equations |
| title_full |
Special Solutions of Bi-Riccati Delay-Differential Equations |
| title_fullStr |
Special Solutions of Bi-Riccati Delay-Differential Equations |
| title_full_unstemmed |
Special Solutions of Bi-Riccati Delay-Differential Equations |
| title_sort |
special solutions of bi-riccati delay-differential equations |
| author |
Berntson, B.K. |
| author_facet |
Berntson, B.K. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations, we consider their elliptic and soliton-type solutions. Using Hirota's bilinear method, we find that two of our equations possess three-soliton-type solutions.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209444 |
| citation_txt |
Special Solutions of Bi-Riccati Delay-Differential Equations / B.K. Berntson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT berntsonbk specialsolutionsofbiriccatidelaydifferentialequations |
| first_indexed |
2025-12-07T19:16:13Z |
| last_indexed |
2025-12-07T19:16:13Z |
| _version_ |
1850886155976835072 |