Special Solutions of Bi-Riccati Delay-Differential Equations

Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations, we consider their elliptic and solito...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Berntson, B.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209444
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Special Solutions of Bi-Riccati Delay-Differential Equations / B.K. Berntson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209444
record_format dspace
spelling Berntson, B.K.
2025-11-21T18:58:29Z
2018
Special Solutions of Bi-Riccati Delay-Differential Equations / B.K. Berntson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 15 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K10; 34K05; 37K40
arXiv: 1710.06091
https://nasplib.isofts.kiev.ua/handle/123456789/209444
https://doi.org/10.3842/SIGMA.2018.020
Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations, we consider their elliptic and soliton-type solutions. Using Hirota's bilinear method, we find that two of our equations possess three-soliton-type solutions.
The author wishes to thank Rod Halburd for useful discussions and the anonymous referees for comments and suggestions that substantially improved the presentation of the paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Special Solutions of Bi-Riccati Delay-Differential Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Special Solutions of Bi-Riccati Delay-Differential Equations
spellingShingle Special Solutions of Bi-Riccati Delay-Differential Equations
Berntson, B.K.
title_short Special Solutions of Bi-Riccati Delay-Differential Equations
title_full Special Solutions of Bi-Riccati Delay-Differential Equations
title_fullStr Special Solutions of Bi-Riccati Delay-Differential Equations
title_full_unstemmed Special Solutions of Bi-Riccati Delay-Differential Equations
title_sort special solutions of bi-riccati delay-differential equations
author Berntson, B.K.
author_facet Berntson, B.K.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations, we consider their elliptic and soliton-type solutions. Using Hirota's bilinear method, we find that two of our equations possess three-soliton-type solutions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209444
citation_txt Special Solutions of Bi-Riccati Delay-Differential Equations / B.K. Berntson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT berntsonbk specialsolutionsofbiriccatidelaydifferentialequations
first_indexed 2025-12-07T19:16:13Z
last_indexed 2025-12-07T19:16:13Z
_version_ 1850886155976835072