Multivariate Quadratic Transformations and the Interpolation Kernel
We prove a number of quadratic transformations of elliptic Selberg integrals (conjectured in an earlier paper of the author), as well as studying in depth the "interpolation kernel", an analytic continuation of the author's elliptic interpolation functions which plays a major role in...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209445 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Multivariate Quadratic Transformations and the Interpolation Kernel / E.M. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 36 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We prove a number of quadratic transformations of elliptic Selberg integrals (conjectured in an earlier paper of the author), as well as studying in depth the "interpolation kernel", an analytic continuation of the author's elliptic interpolation functions which plays a major role in the proof as well as acting as the kernel for a Fourier transform on certain elliptic double affine Hecke algebras (discussed in a later paper). In the process, we give a number of examples of a new approach to proving elliptic hypergeometric integral identities by reduction to a Zariski dense subset of a formal neighborhood of the trigonometric limit.
|
|---|---|
| ISSN: | 1815-0659 |