Billiards and Tilting Characters for SL₃
We formulate a conjecture for the second generation characters of indecomposable tilting modules for SL₃. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system ("b...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209449 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Billiards and Tilting Characters for SL₃ / G. Lusztig, G. Williamson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209449 |
|---|---|
| record_format |
dspace |
| spelling |
Lusztig, G. Williamson, G. 2025-11-21T19:02:20Z 2018 Billiards and Tilting Characters for SL₃ / G. Lusztig, G. Williamson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20C20; 17B10; 20C30 arXiv: 1703.05898 https://nasplib.isofts.kiev.ua/handle/123456789/209449 https://doi.org/10.3842/SIGMA.2018.015 We formulate a conjecture for the second generation characters of indecomposable tilting modules for SL₃. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system ("billiards bouncing in alcoves"). The conjecture implies that decomposition numbers for symmetric groups display (at least) exponential growth. We would like to thank the anonymous referees for their comments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Billiards and Tilting Characters for SL₃ Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Billiards and Tilting Characters for SL₃ |
| spellingShingle |
Billiards and Tilting Characters for SL₃ Lusztig, G. Williamson, G. |
| title_short |
Billiards and Tilting Characters for SL₃ |
| title_full |
Billiards and Tilting Characters for SL₃ |
| title_fullStr |
Billiards and Tilting Characters for SL₃ |
| title_full_unstemmed |
Billiards and Tilting Characters for SL₃ |
| title_sort |
billiards and tilting characters for sl₃ |
| author |
Lusztig, G. Williamson, G. |
| author_facet |
Lusztig, G. Williamson, G. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We formulate a conjecture for the second generation characters of indecomposable tilting modules for SL₃. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system ("billiards bouncing in alcoves"). The conjecture implies that decomposition numbers for symmetric groups display (at least) exponential growth.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209449 |
| citation_txt |
Billiards and Tilting Characters for SL₃ / G. Lusztig, G. Williamson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT lusztigg billiardsandtiltingcharactersforsl3 AT williamsong billiardsandtiltingcharactersforsl3 |
| first_indexed |
2025-12-07T19:59:19Z |
| last_indexed |
2025-12-07T19:59:19Z |
| _version_ |
1850886155964252160 |