Billiards and Tilting Characters for SL₃

We formulate a conjecture for the second generation characters of indecomposable tilting modules for SL₃. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system ("b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Lusztig, G., Williamson, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209449
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Billiards and Tilting Characters for SL₃ / G. Lusztig, G. Williamson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209449
record_format dspace
spelling Lusztig, G.
Williamson, G.
2025-11-21T19:02:20Z
2018
Billiards and Tilting Characters for SL₃ / G. Lusztig, G. Williamson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 26 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20C20; 17B10; 20C30
arXiv: 1703.05898
https://nasplib.isofts.kiev.ua/handle/123456789/209449
https://doi.org/10.3842/SIGMA.2018.015
We formulate a conjecture for the second generation characters of indecomposable tilting modules for SL₃. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system ("billiards bouncing in alcoves"). The conjecture implies that decomposition numbers for symmetric groups display (at least) exponential growth.
We would like to thank the anonymous referees for their comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Billiards and Tilting Characters for SL₃
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Billiards and Tilting Characters for SL₃
spellingShingle Billiards and Tilting Characters for SL₃
Lusztig, G.
Williamson, G.
title_short Billiards and Tilting Characters for SL₃
title_full Billiards and Tilting Characters for SL₃
title_fullStr Billiards and Tilting Characters for SL₃
title_full_unstemmed Billiards and Tilting Characters for SL₃
title_sort billiards and tilting characters for sl₃
author Lusztig, G.
Williamson, G.
author_facet Lusztig, G.
Williamson, G.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We formulate a conjecture for the second generation characters of indecomposable tilting modules for SL₃. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system ("billiards bouncing in alcoves"). The conjecture implies that decomposition numbers for symmetric groups display (at least) exponential growth.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209449
citation_txt Billiards and Tilting Characters for SL₃ / G. Lusztig, G. Williamson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 26 назв. — англ.
work_keys_str_mv AT lusztigg billiardsandtiltingcharactersforsl3
AT williamsong billiardsandtiltingcharactersforsl3
first_indexed 2025-12-07T19:59:19Z
last_indexed 2025-12-07T19:59:19Z
_version_ 1850886155964252160