Categorical Tori

We give explicit and elementary constructions of the categorical extensions of a torus by the circle and discuss an application to loop group extensions. Examples include maximal Tori of simple and simply connected compact Lie groups and the Tori associated with the Leech and Niemeyer lattices. We o...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Ganter, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209450
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Categorical Tori / N. Ganter // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209450
record_format dspace
spelling Ganter, N.
2025-11-21T19:03:11Z
2018
Categorical Tori / N. Ganter // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22E99; 18D99
arXiv:1406.7046
https://nasplib.isofts.kiev.ua/handle/123456789/209450
https://doi.org/10.3842/SIGMA.2018.014
We give explicit and elementary constructions of the categorical extensions of a torus by the circle and discuss an application to loop group extensions. Examples include maximal Tori of simple and simply connected compact Lie groups and the Tori associated with the Leech and Niemeyer lattices. We obtain the extra-special 2-groups as the isomorphism classes of categorical fixed points under an involution action.
The author was supported by an Australian Research Fellowship and by ARC grant DP1095815. It is a pleasure to thank David Roberts for very helpful conversations and correspondence, as well as his open referee report. The idea for Construction 2.1 came from a conversation with him, and I understand that he will also write about it elsewhere. I would like to thank Shan Shah for pointing out a mistake in an earlier version. Many thanks for helpful and inspiring conversations, also go to Matthew Ando, Konrad Waldorf, Thomas Nikolaus, Geoffrey Mason, Arun Ram, and Alex Ghitza. Finally, I wish to thank the anonymous referee for helpful comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Categorical Tori
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Categorical Tori
spellingShingle Categorical Tori
Ganter, N.
title_short Categorical Tori
title_full Categorical Tori
title_fullStr Categorical Tori
title_full_unstemmed Categorical Tori
title_sort categorical tori
author Ganter, N.
author_facet Ganter, N.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We give explicit and elementary constructions of the categorical extensions of a torus by the circle and discuss an application to loop group extensions. Examples include maximal Tori of simple and simply connected compact Lie groups and the Tori associated with the Leech and Niemeyer lattices. We obtain the extra-special 2-groups as the isomorphism classes of categorical fixed points under an involution action.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209450
citation_txt Categorical Tori / N. Ganter // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT gantern categoricaltori
first_indexed 2025-12-02T11:10:55Z
last_indexed 2025-12-02T11:10:55Z
_version_ 1850886073368969216