Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution

We study the effect of Alvis-Curtis duality on the unipotent representations of GLn(q) in non-defining characteristic ℓ. We show that the permutation induced on the simple modules can be expressed in terms of a generalization of the Mullineux involution on the set of all partitions, which involves b...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Authors: Dudas, O., Jacon, N.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209457
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution / O. Dudas , N. Jacon // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209457
record_format dspace
spelling Dudas, O.
Jacon, N.
2025-11-21T19:13:05Z
2018
Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution / O. Dudas , N. Jacon // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20C20; 20C30; 05E10
arXiv: 1706.04743
https://nasplib.isofts.kiev.ua/handle/123456789/209457
https://doi.org/10.3842/SIGMA.2018.007
We study the effect of Alvis-Curtis duality on the unipotent representations of GLn(q) in non-defining characteristic ℓ. We show that the permutation induced on the simple modules can be expressed in terms of a generalization of the Mullineux involution on the set of all partitions, which involves both ℓ and the order of q modulo ℓ.
The authors gratefully acknowledge financial support from the ANR grant GeRepMod ANR-16-CE40-0010-01. We thank Gunter Malle, Emily Norton, and the referees for their many valuable comments on a preliminary version of the manuscript.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
spellingShingle Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
Dudas, O.
Jacon, N.
title_short Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
title_full Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
title_fullStr Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
title_full_unstemmed Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution
title_sort alvis-curtis duality for finite general linear groups and a generalized mullineux involution
author Dudas, O.
Jacon, N.
author_facet Dudas, O.
Jacon, N.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the effect of Alvis-Curtis duality on the unipotent representations of GLn(q) in non-defining characteristic ℓ. We show that the permutation induced on the simple modules can be expressed in terms of a generalization of the Mullineux involution on the set of all partitions, which involves both ℓ and the order of q modulo ℓ.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209457
citation_txt Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution / O. Dudas , N. Jacon // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT dudaso alviscurtisdualityforfinitegenerallineargroupsandageneralizedmullineuxinvolution
AT jaconn alviscurtisdualityforfinitegenerallineargroupsandageneralizedmullineuxinvolution
first_indexed 2025-12-07T16:26:26Z
last_indexed 2025-12-07T16:26:26Z
_version_ 1850886074522402816