Manifold Ways to Darboux-Halphen System

Many distinct problems give birth to the Darboux-Halphen system of differential equations, and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding an infinite number of double orthogonal surfaces in R³. The second is a p...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Morales, J.A.C., Movasati, H., Nikdelan, Y., Roychowdhury, R., Torres, M.A.C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209461
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Manifold Ways to Darboux-Halphen System / J.A.C. Morales, H. Movasati, Y. Nikdelan, R. Roychowdhury, M.A.C. Torres // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Many distinct problems give birth to the Darboux-Halphen system of differential equations, and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding an infinite number of double orthogonal surfaces in R³. The second is a problem in general relativity about a gravitational instanton in the Bianchi IX metric space. The third problem stems from the new take on the moduli of enhanced elliptic curves called the Gauss-Manin connection in disguise, developed by one of the authors, and finally, in the last problem Darboux-Halphen system emerges from the associative algebra on the tangent space of a Frobenius manifold.
ISSN:1815-0659