Manifold Ways to Darboux-Halphen System

Many distinct problems give birth to the Darboux-Halphen system of differential equations, and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding an infinite number of double orthogonal surfaces in R³. The second is a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Morales, J.A.C., Movasati, H., Nikdelan, Y., Roychowdhury, R., Torres, M.A.C.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209461
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Manifold Ways to Darboux-Halphen System / J.A.C. Morales, H. Movasati, Y. Nikdelan, R. Roychowdhury, M.A.C. Torres // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209461
record_format dspace
spelling Morales, J.A.C.
Movasati, H.
Nikdelan, Y.
Roychowdhury, R.
Torres, M.A.C.
2025-11-21T19:15:28Z
2018
Manifold Ways to Darboux-Halphen System / J.A.C. Morales, H. Movasati, Y. Nikdelan, R. Roychowdhury, M.A.C. Torres // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 53D45; 83C05
arXiv: 1709.09682
https://nasplib.isofts.kiev.ua/handle/123456789/209461
https://doi.org/10.3842/SIGMA.2018.003
Many distinct problems give birth to the Darboux-Halphen system of differential equations, and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding an infinite number of double orthogonal surfaces in R³. The second is a problem in general relativity about a gravitational instanton in the Bianchi IX metric space. The third problem stems from the new take on the moduli of enhanced elliptic curves called the Gauss-Manin connection in disguise, developed by one of the authors, and finally, in the last problem Darboux-Halphen system emerges from the associative algebra on the tangent space of a Frobenius manifold.
During the manuscript preparation period, MACT was fully sponsored by CNpQ-Brasil. The research of RR was supported by FAPESP through the Instituto de Física, Universidade de São Paulo, with grant number 2013/17765-0. The work was initiated during the visit of RR to IMPA. He would like to thank IMPA for the hospitality during the course of this project.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Manifold Ways to Darboux-Halphen System
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Manifold Ways to Darboux-Halphen System
spellingShingle Manifold Ways to Darboux-Halphen System
Morales, J.A.C.
Movasati, H.
Nikdelan, Y.
Roychowdhury, R.
Torres, M.A.C.
title_short Manifold Ways to Darboux-Halphen System
title_full Manifold Ways to Darboux-Halphen System
title_fullStr Manifold Ways to Darboux-Halphen System
title_full_unstemmed Manifold Ways to Darboux-Halphen System
title_sort manifold ways to darboux-halphen system
author Morales, J.A.C.
Movasati, H.
Nikdelan, Y.
Roychowdhury, R.
Torres, M.A.C.
author_facet Morales, J.A.C.
Movasati, H.
Nikdelan, Y.
Roychowdhury, R.
Torres, M.A.C.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Many distinct problems give birth to the Darboux-Halphen system of differential equations, and here we review some of them. The first is the classical problem presented by Darboux and later solved by Halphen concerning finding an infinite number of double orthogonal surfaces in R³. The second is a problem in general relativity about a gravitational instanton in the Bianchi IX metric space. The third problem stems from the new take on the moduli of enhanced elliptic curves called the Gauss-Manin connection in disguise, developed by one of the authors, and finally, in the last problem Darboux-Halphen system emerges from the associative algebra on the tangent space of a Frobenius manifold.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209461
citation_txt Manifold Ways to Darboux-Halphen System / J.A.C. Morales, H. Movasati, Y. Nikdelan, R. Roychowdhury, M.A.C. Torres // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT moralesjac manifoldwaystodarbouxhalphensystem
AT movasatih manifoldwaystodarbouxhalphensystem
AT nikdelany manifoldwaystodarbouxhalphensystem
AT roychowdhuryr manifoldwaystodarbouxhalphensystem
AT torresmac manifoldwaystodarbouxhalphensystem
first_indexed 2025-12-07T18:35:40Z
last_indexed 2025-12-07T18:35:40Z
_version_ 1850886074567491584