Dressing the Dressing Chain

The dressing chain is derived by applying Darboux transformations to the spectral problem of the Korteweg-de Vries (KdV) equation. It is also an auto-Bäcklund transformation for the modified KdV equation. We show that by applying Darboux transformations to the spectral problem of the dressing chain,...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Evripidou, C.A., van der Kamp, P.H., Zhang, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209513
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dressing the Dressing Chain / C.A. Evripidou, P.H. van der Kamp, C. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209513
record_format dspace
spelling Evripidou, C.A.
van der Kamp, P.H.
Zhang, C.
2025-11-24T10:05:24Z
2018
Dressing the Dressing Chain / C.A. Evripidou, P.H. van der Kamp, C. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q53; 37K05; 39A14
arXiv: 1804.02564
https://nasplib.isofts.kiev.ua/handle/123456789/209513
https://doi.org/10.3842/SIGMA.2018.059
The dressing chain is derived by applying Darboux transformations to the spectral problem of the Korteweg-de Vries (KdV) equation. It is also an auto-Bäcklund transformation for the modified KdV equation. We show that by applying Darboux transformations to the spectral problem of the dressing chain, one obtains the lattice KdV equation as the dressing chain of the dressing chain, and that the lattice KdV equation also arises as an auto-Bäcklund transformation for a modified dressing chain. In analogy to the results obtained for the dressing chain (Veselov and Shabat proved complete integrability for odd-dimensional periodic reductions), we study the (0,n)-periodic reduction of the lattice KdV equation, which is a two-valued correspondence. We provide explicit formulas for its branches and establish complete integrability for odd n.
This work was supported by the Australian Research Council, by the China Strategy Implementation Grant Program of La Trobe University, by the NSFC (No. 11601312), and by the Shanghai Young Eastern Scholar program (2016-2019).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Dressing the Dressing Chain
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dressing the Dressing Chain
spellingShingle Dressing the Dressing Chain
Evripidou, C.A.
van der Kamp, P.H.
Zhang, C.
title_short Dressing the Dressing Chain
title_full Dressing the Dressing Chain
title_fullStr Dressing the Dressing Chain
title_full_unstemmed Dressing the Dressing Chain
title_sort dressing the dressing chain
author Evripidou, C.A.
van der Kamp, P.H.
Zhang, C.
author_facet Evripidou, C.A.
van der Kamp, P.H.
Zhang, C.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The dressing chain is derived by applying Darboux transformations to the spectral problem of the Korteweg-de Vries (KdV) equation. It is also an auto-Bäcklund transformation for the modified KdV equation. We show that by applying Darboux transformations to the spectral problem of the dressing chain, one obtains the lattice KdV equation as the dressing chain of the dressing chain, and that the lattice KdV equation also arises as an auto-Bäcklund transformation for a modified dressing chain. In analogy to the results obtained for the dressing chain (Veselov and Shabat proved complete integrability for odd-dimensional periodic reductions), we study the (0,n)-periodic reduction of the lattice KdV equation, which is a two-valued correspondence. We provide explicit formulas for its branches and establish complete integrability for odd n.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209513
citation_txt Dressing the Dressing Chain / C.A. Evripidou, P.H. van der Kamp, C. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT evripidouca dressingthedressingchain
AT vanderkampph dressingthedressingchain
AT zhangc dressingthedressingchain
first_indexed 2025-12-07T14:34:35Z
last_indexed 2025-12-07T14:34:35Z
_version_ 1850886080008552448