Fuchsian Equations with Three Non-Apparent Singularities

We show that for every second-order Fuchsian linear differential equation E with n singularities, of which n−3 are apparent, there exists a hypergeometric equation H and a linear differential operator with polynomial coefficients which maps the space of solutions of H into the space of solutions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Eremenko, A., Tarasov, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209514
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Fuchsian Equations with Three Non-Apparent Singularities / A. Eremenko, V. Tarasov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We show that for every second-order Fuchsian linear differential equation E with n singularities, of which n−3 are apparent, there exists a hypergeometric equation H and a linear differential operator with polynomial coefficients which maps the space of solutions of H into the space of solutions of E. This map is surjective for generic parameters. This justifies one statement of Klein (1905). We also count the number of such equations E with prescribed singularities and exponents. We apply these results to the description of conformal metrics of curvature 1 on the punctured sphere with conic singularities, all but three of them having integer angles.
ISSN:1815-0659