Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials

We show how to obtain linear combinations of polynomials in an orthogonal sequence {Pn}n≥0, that characterize quasi-orthogonal polynomials of order k ≤ n-1. The polynomials in the sequence {Qn,k}n≥0 are obtained from Pn, by making use of parameter shifts. We use an algorithmic approach to find thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Tcheutia, D.D., Jooste, A.S., Koepf, W.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209521
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials / D.D. Tcheutia, A.S. Jooste, W. Koepf // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We show how to obtain linear combinations of polynomials in an orthogonal sequence {Pn}n≥0, that characterize quasi-orthogonal polynomials of order k ≤ n-1. The polynomials in the sequence {Qn,k}n≥0 are obtained from Pn, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable, and these equations are used to prove the quasi-orthogonality of order k. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the endpoints of the interval of orthogonality of the sequence {Pn}n≥0, where possible.
ISSN:1815-0659