Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials

We show how to obtain linear combinations of polynomials in an orthogonal sequence {Pn}n≥0, that characterize quasi-orthogonal polynomials of order k ≤ n-1. The polynomials in the sequence {Qn,k}n≥0 are obtained from Pn, by making use of parameter shifts. We use an algorithmic approach to find thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Tcheutia, D.D., Jooste, A.S., Koepf, W.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209521
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials / D.D. Tcheutia, A.S. Jooste, W. Koepf // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209521
record_format dspace
spelling Tcheutia, D.D.
Jooste, A.S.
Koepf, W.
2025-11-24T10:31:20Z
2018
Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials / D.D. Tcheutia, A.S. Jooste, W. Koepf // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C05; 33C45; 33F10; 33D15; 12D10
arXiv: 1805.08954
https://nasplib.isofts.kiev.ua/handle/123456789/209521
https://doi.org/10.3842/SIGMA.2018.051
We show how to obtain linear combinations of polynomials in an orthogonal sequence {Pn}n≥0, that characterize quasi-orthogonal polynomials of order k ≤ n-1. The polynomials in the sequence {Qn,k}n≥0 are obtained from Pn, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable, and these equations are used to prove the quasi-orthogonality of order k. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the endpoints of the interval of orthogonality of the sequence {Pn}n≥0, where possible.
The authors thank the referees for the valuable comments and suggestions, which considerably improved the manuscript. This work has been supported by the Institute of Mathematics of the University of Kassel (Germany) for D.D. Tcheutia.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
spellingShingle Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
Tcheutia, D.D.
Jooste, A.S.
Koepf, W.
title_short Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
title_full Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
title_fullStr Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
title_full_unstemmed Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
title_sort quasi-orthogonality of some hypergeometric and q-hypergeometric polynomials
author Tcheutia, D.D.
Jooste, A.S.
Koepf, W.
author_facet Tcheutia, D.D.
Jooste, A.S.
Koepf, W.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show how to obtain linear combinations of polynomials in an orthogonal sequence {Pn}n≥0, that characterize quasi-orthogonal polynomials of order k ≤ n-1. The polynomials in the sequence {Qn,k}n≥0 are obtained from Pn, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable, and these equations are used to prove the quasi-orthogonality of order k. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the endpoints of the interval of orthogonality of the sequence {Pn}n≥0, where possible.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209521
citation_txt Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials / D.D. Tcheutia, A.S. Jooste, W. Koepf // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT tcheutiadd quasiorthogonalityofsomehypergeometricandqhypergeometricpolynomials
AT joosteas quasiorthogonalityofsomehypergeometricandqhypergeometricpolynomials
AT koepfw quasiorthogonalityofsomehypergeometricandqhypergeometricpolynomials
first_indexed 2025-12-03T04:30:58Z
last_indexed 2025-12-03T04:30:58Z
_version_ 1850885971316310017