Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials
We show how to obtain linear combinations of polynomials in an orthogonal sequence {Pn}n≥0, that characterize quasi-orthogonal polynomials of order k ≤ n-1. The polynomials in the sequence {Qn,k}n≥0 are obtained from Pn, by making use of parameter shifts. We use an algorithmic approach to find thes...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209521 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Quasi-Orthogonality of Some Hypergeometric and q-Hypergeometric Polynomials / D.D. Tcheutia, A.S. Jooste, W. Koepf // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!