Jacobi-Trudi Identity in Super Chern-Simons Matrix Model

It was proved by Macdonald that the Giambelli identity holds if we define the Schur functions using the Jacobi-Trudi identity. Previously, for the super Chern-Simons matrix model (the spherical one-point function of the superconformal Chern-Simons theory describing the worldvolume of the M2-branes),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Furukawa, T., Moriyama, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209523
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Jacobi-Trudi Identity in Super Chern-Simons Matrix Model / T. Furukawa, S. Moriyama // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 48 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:It was proved by Macdonald that the Giambelli identity holds if we define the Schur functions using the Jacobi-Trudi identity. Previously, for the super Chern-Simons matrix model (the spherical one-point function of the superconformal Chern-Simons theory describing the worldvolume of the M2-branes), the Giambelli identity was proved from a shifted version of it. With the same shifted Giambelli identity, we can further prove the Jacobi-Trudi identity, which strongly suggests an integrable structure for this matrix model.
ISSN:1815-0659