Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus

The self-dual spaces of polynomials are related to Bethe vectors in the Gaudin model associated to the Lie algebras of types B and C. In this paper, we give lower bounds for the number of real self-dual spaces in intersections of Schubert varieties related to osculating flags in the Grassmannian. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Lu, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209526
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus / K. Lu // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209526
record_format dspace
spelling Lu, K.
2025-11-24T10:40:49Z
2018
Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus / K. Lu // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14N99; 17B80; 82B23
arXiv: 1710.06534
https://nasplib.isofts.kiev.ua/handle/123456789/209526
https://doi.org/10.3842/SIGMA.2018.046
The self-dual spaces of polynomials are related to Bethe vectors in the Gaudin model associated to the Lie algebras of types B and C. In this paper, we give lower bounds for the number of real self-dual spaces in intersections of Schubert varieties related to osculating flags in the Grassmannian. The higher Gaudin Hamiltonians are self-adjoint with respect to a nondegenerate indefinite Hermitian form. Our bound comes from the computation of the signature of this form.
The author thanks E. Mukhin and V. Tarasov for useful discussions. The author also thanks the referees for their comments and suggestions that substantially improved the first version of this paper. This work was partially supported by the Zhejiang Province Science Foundation, grant No. LY14A010018.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
spellingShingle Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
Lu, K.
title_short Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
title_full Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
title_fullStr Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
title_full_unstemmed Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
title_sort lower bounds for numbers of real self-dual spaces in problems of schubert calculus
author Lu, K.
author_facet Lu, K.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The self-dual spaces of polynomials are related to Bethe vectors in the Gaudin model associated to the Lie algebras of types B and C. In this paper, we give lower bounds for the number of real self-dual spaces in intersections of Schubert varieties related to osculating flags in the Grassmannian. The higher Gaudin Hamiltonians are self-adjoint with respect to a nondegenerate indefinite Hermitian form. Our bound comes from the computation of the signature of this form.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209526
citation_txt Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus / K. Lu // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT luk lowerboundsfornumbersofrealselfdualspacesinproblemsofschubertcalculus
first_indexed 2025-12-03T09:54:13Z
last_indexed 2025-12-03T09:54:13Z
_version_ 1850885972386906112