Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
The self-dual spaces of polynomials are related to Bethe vectors in the Gaudin model associated to the Lie algebras of types B and C. In this paper, we give lower bounds for the number of real self-dual spaces in intersections of Schubert varieties related to osculating flags in the Grassmannian. Th...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | Lu, K. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209526 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus / K. Lu // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Improving Lagrange Dual Bounds for Quadratic Extremal Problems
von: O. A. Berezovskyi
Veröffentlicht: (2020) -
Minuscule Schubert Varieties and Mirror Symmetry
von: Miura, M.
Veröffentlicht: (2017) -
Notes on Schubert, Grothendieck and Key Polynomials
von: Kirillov, A.N.
Veröffentlicht: (2016) -
Algorithm to find a dual bound in quadratic extremal problem
von: O. A. Berezovskyi
Veröffentlicht: (2018) -
Analytical expression of the dual bound for the point-packing problem in the ball
von: O. A. Berezovskij, et al.
Veröffentlicht: (2014)