Homomorphisms from Specht Modules to Signed Young Permutation Modules

We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR c...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Authors: Lim, K.J., Tan, K.M.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209534
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Homomorphisms from Specht Modules to Signed Young Permutation Modules / K.J. Lim, K.M. Tan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR corresponding to semistandard λ-tableaux of type (α|β). We also study the conditions for which ΘFsstd-a subset of HomFSn(SλF, MF(α|β)) induced by Θsstd-is linearly independent, and show that it is a basis for HomFSn(SλF, MF(α|β)) when FSn is semisimple.
ISSN:1815-0659