Homomorphisms from Specht Modules to Signed Young Permutation Modules

We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR c...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Lim, K.J., Tan, K.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209534
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homomorphisms from Specht Modules to Signed Young Permutation Modules / K.J. Lim, K.M. Tan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209534
record_format dspace
spelling Lim, K.J.
Tan, K.M.
2025-11-24T10:45:06Z
2018
Homomorphisms from Specht Modules to Signed Young Permutation Modules / K.J. Lim, K.M. Tan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20C30
arXiv: 1606.00542
https://nasplib.isofts.kiev.ua/handle/123456789/209534
https://doi.org/10.3842/SIGMA.2018.038
We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR corresponding to semistandard λ-tableaux of type (α|β). We also study the conditions for which ΘFsstd-a subset of HomFSn(SλF, MF(α|β)) induced by Θsstd-is linearly independent, and show that it is a basis for HomFSn(SλF, MF(α|β)) when FSn is semisimple.
Supported by Singapore MOE Tier 2 AcRF MOE2015-T2-2-003. We thank the guest editors for bringing to our attention the work of Du and Rui on signed q-permutation modules of the Iwahori–Hecke algebras of type A [4], and the referees for their helpful comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Homomorphisms from Specht Modules to Signed Young Permutation Modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Homomorphisms from Specht Modules to Signed Young Permutation Modules
spellingShingle Homomorphisms from Specht Modules to Signed Young Permutation Modules
Lim, K.J.
Tan, K.M.
title_short Homomorphisms from Specht Modules to Signed Young Permutation Modules
title_full Homomorphisms from Specht Modules to Signed Young Permutation Modules
title_fullStr Homomorphisms from Specht Modules to Signed Young Permutation Modules
title_full_unstemmed Homomorphisms from Specht Modules to Signed Young Permutation Modules
title_sort homomorphisms from specht modules to signed young permutation modules
author Lim, K.J.
Tan, K.M.
author_facet Lim, K.J.
Tan, K.M.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR corresponding to semistandard λ-tableaux of type (α|β). We also study the conditions for which ΘFsstd-a subset of HomFSn(SλF, MF(α|β)) induced by Θsstd-is linearly independent, and show that it is a basis for HomFSn(SλF, MF(α|β)) when FSn is semisimple.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209534
citation_txt Homomorphisms from Specht Modules to Signed Young Permutation Modules / K.J. Lim, K.M. Tan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT limkj homomorphismsfromspechtmodulestosignedyoungpermutationmodules
AT tankm homomorphismsfromspechtmodulestosignedyoungpermutationmodules
first_indexed 2025-12-03T18:36:32Z
last_indexed 2025-12-03T18:36:32Z
_version_ 1850885972391100416