Homomorphisms from Specht Modules to Signed Young Permutation Modules
We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR c...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209534 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Homomorphisms from Specht Modules to Signed Young Permutation Modules / K.J. Lim, K.M. Tan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209534 |
|---|---|
| record_format |
dspace |
| spelling |
Lim, K.J. Tan, K.M. 2025-11-24T10:45:06Z 2018 Homomorphisms from Specht Modules to Signed Young Permutation Modules / K.J. Lim, K.M. Tan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20C30 arXiv: 1606.00542 https://nasplib.isofts.kiev.ua/handle/123456789/209534 https://doi.org/10.3842/SIGMA.2018.038 We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR corresponding to semistandard λ-tableaux of type (α|β). We also study the conditions for which ΘFsstd-a subset of HomFSn(SλF, MF(α|β)) induced by Θsstd-is linearly independent, and show that it is a basis for HomFSn(SλF, MF(α|β)) when FSn is semisimple. Supported by Singapore MOE Tier 2 AcRF MOE2015-T2-2-003. We thank the guest editors for bringing to our attention the work of Du and Rui on signed q-permutation modules of the Iwahori–Hecke algebras of type A [4], and the referees for their helpful comments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Homomorphisms from Specht Modules to Signed Young Permutation Modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Homomorphisms from Specht Modules to Signed Young Permutation Modules |
| spellingShingle |
Homomorphisms from Specht Modules to Signed Young Permutation Modules Lim, K.J. Tan, K.M. |
| title_short |
Homomorphisms from Specht Modules to Signed Young Permutation Modules |
| title_full |
Homomorphisms from Specht Modules to Signed Young Permutation Modules |
| title_fullStr |
Homomorphisms from Specht Modules to Signed Young Permutation Modules |
| title_full_unstemmed |
Homomorphisms from Specht Modules to Signed Young Permutation Modules |
| title_sort |
homomorphisms from specht modules to signed young permutation modules |
| author |
Lim, K.J. Tan, K.M. |
| author_facet |
Lim, K.J. Tan, K.M. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We construct a class ΘR of homomorphisms from a Specht module SλZ to a signed permutation module MZ(α|β), which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any ϕ ∈ HomZSn(SλZ, MZ(α|β)) lies in the Q-span of Θsstd, a subset of ΘR corresponding to semistandard λ-tableaux of type (α|β). We also study the conditions for which ΘFsstd-a subset of HomFSn(SλF, MF(α|β)) induced by Θsstd-is linearly independent, and show that it is a basis for HomFSn(SλF, MF(α|β)) when FSn is semisimple.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209534 |
| citation_txt |
Homomorphisms from Specht Modules to Signed Young Permutation Modules / K.J. Lim, K.M. Tan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT limkj homomorphismsfromspechtmodulestosignedyoungpermutationmodules AT tankm homomorphismsfromspechtmodulestosignedyoungpermutationmodules |
| first_indexed |
2025-12-03T18:36:32Z |
| last_indexed |
2025-12-03T18:36:32Z |
| _version_ |
1850885972391100416 |