Surface Defects in E-String Compactifications and the van Diejen Model

We study the supersymmetric index of four-dimensional theories obtained by compactifications of the six-dimensional E string theory on a Riemann surface. In particular, we derive the difference operator, introducing a certain class of surface defects to the index computation. The difference operator...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Nazzal, B., Razamat, S.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209536
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Surface Defects in E-String Compactifications and the van Diejen Model / B. Nazzal, S.S. Razamat // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209536
record_format dspace
spelling Nazzal, B.
Razamat, S.S.
2025-11-24T10:45:50Z
2018
Surface Defects in E-String Compactifications and the van Diejen Model / B. Nazzal, S.S. Razamat // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81T60
arXiv: 1801.00960
https://nasplib.isofts.kiev.ua/handle/123456789/209536
https://doi.org/10.3842/SIGMA.2018.036
We study the supersymmetric index of four-dimensional theories obtained by compactifications of the six-dimensional E string theory on a Riemann surface. In particular, we derive the difference operator, introducing a certain class of surface defects to the index computation. The difference operator turns out to be, up to a constant shift, an analytic difference operator discussed by van Diejen.
We would like to thank Hee-Cheol Kim, S. Ruijsenaars, Cumrun Vafa, and Gabi Zafrir for relevant discussions. The research was supported by the Israel Science Foundation under grant no. 1696/15 and by the I-CORE Program of the Planning and Budgeting Committee.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Surface Defects in E-String Compactifications and the van Diejen Model
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Surface Defects in E-String Compactifications and the van Diejen Model
spellingShingle Surface Defects in E-String Compactifications and the van Diejen Model
Nazzal, B.
Razamat, S.S.
title_short Surface Defects in E-String Compactifications and the van Diejen Model
title_full Surface Defects in E-String Compactifications and the van Diejen Model
title_fullStr Surface Defects in E-String Compactifications and the van Diejen Model
title_full_unstemmed Surface Defects in E-String Compactifications and the van Diejen Model
title_sort surface defects in e-string compactifications and the van diejen model
author Nazzal, B.
Razamat, S.S.
author_facet Nazzal, B.
Razamat, S.S.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the supersymmetric index of four-dimensional theories obtained by compactifications of the six-dimensional E string theory on a Riemann surface. In particular, we derive the difference operator, introducing a certain class of surface defects to the index computation. The difference operator turns out to be, up to a constant shift, an analytic difference operator discussed by van Diejen.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209536
citation_txt Surface Defects in E-String Compactifications and the van Diejen Model / B. Nazzal, S.S. Razamat // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT nazzalb surfacedefectsinestringcompactificationsandthevandiejenmodel
AT razamatss surfacedefectsinestringcompactificationsandthevandiejenmodel
first_indexed 2025-12-07T20:37:39Z
last_indexed 2025-12-07T20:37:39Z
_version_ 1850886159185477633