Чебишовське наближення сумою многочлена і функції з одним нелінійним параметром
Розглядається чебишовське наближення сумою многочлена і функції з одним нелінійним параметром. Встановлено умову, за якої чебишовське наближення з найменшою абсолютною похибкою таким виразом існує й єдине. Наведено приклади таких виразів і класів функцій, для яких чебишовське наближення цими виразам...
Saved in:
| Published in: | Фізико-математичне моделювання та інформаційні технології |
|---|---|
| Date: | 2005 |
| Main Author: | |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
2005
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/20963 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Чебишовське наближення сумою многочлена і функції з одним нелінійним параметром / П. Малачівський // Фіз.-мат. моделювання та інформ. технології. — 2005. — Вип. 1. — С. 132-143. — Бібліогр.: 12 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Розглядається чебишовське наближення сумою многочлена і функції з одним нелінійним параметром. Встановлено умову, за якої чебишовське наближення з найменшою абсолютною похибкою таким виразом існує й єдине. Наведено приклади таких виразів і класів функцій, для яких чебишовське наближення цими виразами існує.
Chebyshev approximation by sum of the polynomial and the function with one nonlinear parameter is considered. The necessary condition for existence and uniqueness of such approximation is established. Examples of such expressions and classes of functions, for which Chebyshev approximation exists, are given.
Рассматривается чебышевское приближение суммой многочлена и функции c одним нелинейным параметром. Установлены условия, при которых существует и единственное чебышевское приближение с наименьшей абсолютной погрешностью. Приведены примеры таких выражений и классов функций, для которых чебышевское приближение существует.
|
|---|---|
| ISSN: | 1816-1545 |