On Lagrangians with Reduced-Order Euler-Lagrange Equations

If a Lagrangian defining a variational problem has order k, then its Euler-Lagrange equations generically have order 2k. This paper considers the case where the Euler-Lagrange equations have order strictly less than 2k, and shows that in such a case the Lagrangian must be a polynomial in the highest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Saunders, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209761
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Lagrangians with Reduced-Order Euler-Lagrange Equations / D. Saunders // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:If a Lagrangian defining a variational problem has order k, then its Euler-Lagrange equations generically have order 2k. This paper considers the case where the Euler-Lagrange equations have order strictly less than 2k, and shows that in such a case the Lagrangian must be a polynomial in the highest-order derivative variables, with a specific upper bound on the degree of the polynomial. The paper also provides an explicit formulation, derived from a geometrical construction, of a family of such k-th order Lagrangians, and it is conjectured that all such Lagrangians arise in this way.
ISSN:1815-0659