On Lagrangians with Reduced-Order Euler-Lagrange Equations
If a Lagrangian defining a variational problem has order k, then its Euler-Lagrange equations generically have order 2k. This paper considers the case where the Euler-Lagrange equations have order strictly less than 2k, and shows that in such a case the Lagrangian must be a polynomial in the highest...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209761 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Lagrangians with Reduced-Order Euler-Lagrange Equations / D. Saunders // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | If a Lagrangian defining a variational problem has order k, then its Euler-Lagrange equations generically have order 2k. This paper considers the case where the Euler-Lagrange equations have order strictly less than 2k, and shows that in such a case the Lagrangian must be a polynomial in the highest-order derivative variables, with a specific upper bound on the degree of the polynomial. The paper also provides an explicit formulation, derived from a geometrical construction, of a family of such k-th order Lagrangians, and it is conjectured that all such Lagrangians arise in this way.
|
|---|---|
| ISSN: | 1815-0659 |