Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI

We investigate the recurrence coefficients of discrete orthogonal polynomials on the non-negative integers with hypergeometric weights and show that they satisfy a system of non-linear difference equations and a non-linear second-order differential equation in one of the parameters of the weights. T...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Filipuk, G., Van Assche, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209762
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209762
record_format dspace
spelling Filipuk, G.
Van Assche, W.
2025-11-26T11:23:17Z
2018
Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C45; 33E17; 34M55; 42C05
arXiv: 1804.02856
https://nasplib.isofts.kiev.ua/handle/123456789/209762
https://doi.org/10.3842/SIGMA.2018.088
We investigate the recurrence coefficients of discrete orthogonal polynomials on the non-negative integers with hypergeometric weights and show that they satisfy a system of non-linear difference equations and a non-linear second-order differential equation in one of the parameters of the weights. The non-linear difference equations form a pair of discrete Painlevé equations, and the differential equation is the σ-form of the sixth Painlevé equation. We briefly investigate the asymptotic behavior of the recurrence coefficients as n→∞ using the discrete Painlevé equations.
GF acknowledges the support of the National Science Center (Poland) via grant OPUS 2017/25/B/BST1/00931. Support of the Alexander von Humboldt Foundation is also gratefully acknowledged. WVA is supported by FWO research project G.0864.16N and EOS project PRIMA 30889451. The authors thank the anonymous referees for their comments, which improved the original version.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
spellingShingle Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
Filipuk, G.
Van Assche, W.
title_short Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
title_full Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
title_fullStr Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
title_full_unstemmed Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI
title_sort discrete orthogonal polynomials with hypergeometric weights and painlevé vi
author Filipuk, G.
Van Assche, W.
author_facet Filipuk, G.
Van Assche, W.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We investigate the recurrence coefficients of discrete orthogonal polynomials on the non-negative integers with hypergeometric weights and show that they satisfy a system of non-linear difference equations and a non-linear second-order differential equation in one of the parameters of the weights. The non-linear difference equations form a pair of discrete Painlevé equations, and the differential equation is the σ-form of the sixth Painlevé equation. We briefly investigate the asymptotic behavior of the recurrence coefficients as n→∞ using the discrete Painlevé equations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209762
citation_txt Discrete Orthogonal Polynomials with Hypergeometric Weights and Painlevé VI / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT filipukg discreteorthogonalpolynomialswithhypergeometricweightsandpainlevevi
AT vanasschew discreteorthogonalpolynomialswithhypergeometricweightsandpainlevevi
first_indexed 2025-12-03T12:22:44Z
last_indexed 2025-12-03T12:22:44Z
_version_ 1850885992080211968