Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
We build metrized quantum vector bundles over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metr...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209771 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections / L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209771 |
|---|---|
| record_format |
dspace |
| spelling |
Huang, L. 2025-11-26T11:33:07Z 2018 Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections / L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L08; 46L57; 46L87; 37A55; 58B34 arXiv: 1803.04036 https://nasplib.isofts.kiev.ua/handle/123456789/209771 https://doi.org/10.3842/SIGMA.2018.079 We build metrized quantum vector bundles over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov-Hausdorff propinquity. The author wishes to thank Konrad Aguilar and Frédéric Latrémolière for their generous help on the Gromov–Hausdorff propinquity. The author also wishes to thank Albert Sheu for his help in understanding Rosenberg’s work on Levi-Civita connections. The warmest gratitude is reserved for the referees who offered valuable advice on how to significantly improve the quality of this paper. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections |
| spellingShingle |
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections Huang, L. |
| title_short |
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections |
| title_full |
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections |
| title_fullStr |
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections |
| title_full_unstemmed |
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections |
| title_sort |
metrized quantum vector bundles over quantum tori built from riemannian metrics and rosenberg's levi-civita connections |
| author |
Huang, L. |
| author_facet |
Huang, L. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We build metrized quantum vector bundles over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov-Hausdorff propinquity.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209771 |
| citation_txt |
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections / L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT huangl metrizedquantumvectorbundlesoverquantumtoribuiltfromriemannianmetricsandrosenbergslevicivitaconnections |
| first_indexed |
2025-12-07T20:26:51Z |
| last_indexed |
2025-12-07T20:26:51Z |
| _version_ |
1850886169190989824 |