Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections

We build metrized quantum vector bundles over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metr...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Huang, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209771
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections / L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209771
record_format dspace
spelling Huang, L.
2025-11-26T11:33:07Z
2018
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections / L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 46L08; 46L57; 46L87; 37A55; 58B34
arXiv: 1803.04036
https://nasplib.isofts.kiev.ua/handle/123456789/209771
https://doi.org/10.3842/SIGMA.2018.079
We build metrized quantum vector bundles over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov-Hausdorff propinquity.
The author wishes to thank Konrad Aguilar and Frédéric Latrémolière for their generous help on the Gromov–Hausdorff propinquity. The author also wishes to thank Albert Sheu for his help in understanding Rosenberg’s work on Levi-Civita connections. The warmest gratitude is reserved for the referees who offered valuable advice on how to significantly improve the quality of this paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
spellingShingle Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
Huang, L.
title_short Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
title_full Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
title_fullStr Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
title_full_unstemmed Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections
title_sort metrized quantum vector bundles over quantum tori built from riemannian metrics and rosenberg's levi-civita connections
author Huang, L.
author_facet Huang, L.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We build metrized quantum vector bundles over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov-Hausdorff propinquity.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209771
citation_txt Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections / L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT huangl metrizedquantumvectorbundlesoverquantumtoribuiltfromriemannianmetricsandrosenbergslevicivitaconnections
first_indexed 2025-12-07T20:26:51Z
last_indexed 2025-12-07T20:26:51Z
_version_ 1850886169190989824