t-Unique Reductions for Mészáros's Subdivision Algebra

Fix a commutative ring k, two elements β ∈ k and α ∈ k, and a positive integer n. Let X be the polynomial ring over k in the n(n−1)/2 indeterminates xᵢ,ⱼ for all 1 ≤ i < j ≤ n. Consider the ideal J of X generated by all polynomials of the form xᵢ,ⱼxⱼ,ₖ−xᵢ,ₖ(xᵢ,ⱼ+xⱼ,ₖ+β)−α for 1 ≤ i< j < k ≤...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Author: Grinberg, D.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209772
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:t-Unique Reductions for Mészáros's Subdivision Algebra / D. Grinberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209772
record_format dspace
spelling Grinberg, D.
2025-11-26T11:33:42Z
2018
t-Unique Reductions for Mészáros's Subdivision Algebra / D. Grinberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 05E15; 05E40
arXiv: 1704.00839
https://nasplib.isofts.kiev.ua/handle/123456789/209772
https://doi.org/10.3842/SIGMA.2018.078
Fix a commutative ring k, two elements β ∈ k and α ∈ k, and a positive integer n. Let X be the polynomial ring over k in the n(n−1)/2 indeterminates xᵢ,ⱼ for all 1 ≤ i < j ≤ n. Consider the ideal J of X generated by all polynomials of the form xᵢ,ⱼxⱼ,ₖ−xᵢ,ₖ(xᵢ,ⱼ+xⱼ,ₖ+β)−α for 1 ≤ i< j < k ≤ n. The quotient algebra X/J (at least for a certain choice of k, β, and α) has been introduced by Karola Mészáros in [Trans. Amer. Math. Soc. 363 (2011), 4359-4382] as a commutative analogue of Anatol Kirillov's quasi-classical Yang-Baxter algebra. A monomial in X is said to be pathless if it has no divisors of the form xᵢ,ⱼxⱼ,ₖ with 1 ≤ i < j < k ≤n. The residue classes of these pathless monomials span the k-module X/J, but (in general) are k-linearly dependent. More combinatorially: reducing a given p∈X modulo the ideal J by applying replacements of the form xᵢ,ⱼxⱼ,ₖ↦xᵢ,ₖ(xᵢ,ⱼ+xⱼ,ₖ+β)+α always eventually leads to a k-linear combination of pathless monomials, but the result may depend on the choices made in the process. More recently, the study of Grothendieck polynomials has led Laura Escobar and Karola Mészáros [Algebraic Combin. 1 (2018), 395-414] to defining a k-algebra homomorphism D from X into the polynomial ring k[t₁,t₂,…,tₙ₋₁] that sends each xᵢ,ⱼ to tᵢ. We show the following fact (generalizing a conjecture of Mészáros): If p ∈ X, and if q ∈ X is a k-linear combination of pathless monomials satisfying p ≡ q mod J, then D(q) does not depend on q (as long as β, α, and p are fixed). Thus, the above way of reducing a p ∈ X modulo J may lead to different results, but all of them become identical once D is applied. We also find an actual basis of the k-module X/J, using what we call forkless monomials.
The SageMath computer algebra system [23] was of great service during the development of the results below. Conversations with Nick Early have led me to the ideas in Section 5.3, and Victor Reiner has helped me concretize them. This paper has furthermore profited from enlightening comments by Ricky Liu, Karola Mészáros, Nicholas Proudfoot, Travis Scrimshaw, Richard Stanley, the anonymous referees, and the editor.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
t-Unique Reductions for Mészáros's Subdivision Algebra
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title t-Unique Reductions for Mészáros's Subdivision Algebra
spellingShingle t-Unique Reductions for Mészáros's Subdivision Algebra
Grinberg, D.
title_short t-Unique Reductions for Mészáros's Subdivision Algebra
title_full t-Unique Reductions for Mészáros's Subdivision Algebra
title_fullStr t-Unique Reductions for Mészáros's Subdivision Algebra
title_full_unstemmed t-Unique Reductions for Mészáros's Subdivision Algebra
title_sort t-unique reductions for mészáros's subdivision algebra
author Grinberg, D.
author_facet Grinberg, D.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Fix a commutative ring k, two elements β ∈ k and α ∈ k, and a positive integer n. Let X be the polynomial ring over k in the n(n−1)/2 indeterminates xᵢ,ⱼ for all 1 ≤ i < j ≤ n. Consider the ideal J of X generated by all polynomials of the form xᵢ,ⱼxⱼ,ₖ−xᵢ,ₖ(xᵢ,ⱼ+xⱼ,ₖ+β)−α for 1 ≤ i< j < k ≤ n. The quotient algebra X/J (at least for a certain choice of k, β, and α) has been introduced by Karola Mészáros in [Trans. Amer. Math. Soc. 363 (2011), 4359-4382] as a commutative analogue of Anatol Kirillov's quasi-classical Yang-Baxter algebra. A monomial in X is said to be pathless if it has no divisors of the form xᵢ,ⱼxⱼ,ₖ with 1 ≤ i < j < k ≤n. The residue classes of these pathless monomials span the k-module X/J, but (in general) are k-linearly dependent. More combinatorially: reducing a given p∈X modulo the ideal J by applying replacements of the form xᵢ,ⱼxⱼ,ₖ↦xᵢ,ₖ(xᵢ,ⱼ+xⱼ,ₖ+β)+α always eventually leads to a k-linear combination of pathless monomials, but the result may depend on the choices made in the process. More recently, the study of Grothendieck polynomials has led Laura Escobar and Karola Mészáros [Algebraic Combin. 1 (2018), 395-414] to defining a k-algebra homomorphism D from X into the polynomial ring k[t₁,t₂,…,tₙ₋₁] that sends each xᵢ,ⱼ to tᵢ. We show the following fact (generalizing a conjecture of Mészáros): If p ∈ X, and if q ∈ X is a k-linear combination of pathless monomials satisfying p ≡ q mod J, then D(q) does not depend on q (as long as β, α, and p are fixed). Thus, the above way of reducing a p ∈ X modulo J may lead to different results, but all of them become identical once D is applied. We also find an actual basis of the k-module X/J, using what we call forkless monomials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209772
citation_txt t-Unique Reductions for Mészáros's Subdivision Algebra / D. Grinberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT grinbergd tuniquereductionsformeszarosssubdivisionalgebra
first_indexed 2025-12-07T12:59:51Z
last_indexed 2025-12-07T12:59:51Z
_version_ 1850885993250422784