The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type

Consider the Laguerre polynomials and deform them by the introduction in the measure of an exponential singularity at zero. In [Chen Y., Its A., J. Approx. Theory 162 (2010), 270-297], the authors proved that this deformation can be described by systems of differential/difference equations for the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Cafasso, M., de la Iglesia, M.D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209774
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type / M. Cafasso, M.D. de la Iglesia // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209774
record_format dspace
spelling Cafasso, M.,
de la Iglesia, M.D.
2025-11-26T11:34:49Z
2018
The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type / M. Cafasso, M.D. de la Iglesia // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M56; 35Q15; 37J35; 42C05
arXiv: 1801.08740
https://nasplib.isofts.kiev.ua/handle/123456789/209774
https://doi.org/10.3842/SIGMA.2018.076
Consider the Laguerre polynomials and deform them by the introduction in the measure of an exponential singularity at zero. In [Chen Y., Its A., J. Approx. Theory 162 (2010), 270-297], the authors proved that this deformation can be described by systems of differential/difference equations for the corresponding recursion coefficients and that these equations, ultimately, are equivalent to the Painlevé III equation and its Bäcklund/Schlesinger transformations. Here, we prove that an analogue result holds for some kind of semiclassical matrix-valued orthogonal polynomials of Laguerre type.
M.C. acknowledges the financial support of the Universidad Nacional Autónoma de México (UNAM) and the Unité Mixte International (UMI) “Laboratoire Solomon Lefschetz”, and thanks their staff for the hospitality during his stay in Mexico. We both acknowledge the financial support of the Instituto de Ciencias Matemáticas (ICMAT) for our stay in Madrid during the thematic program “Orthogonal polynomials and special functions in Mathematical Physics and Approximation Theory”, and we are particularly grateful to David Gómez-Ullate for his invitation to participate. Finally, the work of the first author is also supported by the project IPaDEGAN (H2020-MSCA-RISE-2017), grant number 778010 (European Union), and the work of the second one by PAPIIT-DGAPA-UNAM grant IA102617 (Mexico).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
spellingShingle The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
Cafasso, M.,
de la Iglesia, M.D.
title_short The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
title_full The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
title_fullStr The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
title_full_unstemmed The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
title_sort toda and painlevé systems associated with semiclassical matrix-valued orthogonal polynomials of laguerre type
author Cafasso, M.,
de la Iglesia, M.D.
author_facet Cafasso, M.,
de la Iglesia, M.D.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Consider the Laguerre polynomials and deform them by the introduction in the measure of an exponential singularity at zero. In [Chen Y., Its A., J. Approx. Theory 162 (2010), 270-297], the authors proved that this deformation can be described by systems of differential/difference equations for the corresponding recursion coefficients and that these equations, ultimately, are equivalent to the Painlevé III equation and its Bäcklund/Schlesinger transformations. Here, we prove that an analogue result holds for some kind of semiclassical matrix-valued orthogonal polynomials of Laguerre type.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209774
citation_txt The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type / M. Cafasso, M.D. de la Iglesia // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT cafassom thetodaandpainlevesystemsassociatedwithsemiclassicalmatrixvaluedorthogonalpolynomialsoflaguerretype
AT delaiglesiamd thetodaandpainlevesystemsassociatedwithsemiclassicalmatrixvaluedorthogonalpolynomialsoflaguerretype
AT cafassom todaandpainlevesystemsassociatedwithsemiclassicalmatrixvaluedorthogonalpolynomialsoflaguerretype
AT delaiglesiamd todaandpainlevesystemsassociatedwithsemiclassicalmatrixvaluedorthogonalpolynomialsoflaguerretype
first_indexed 2025-12-07T15:34:47Z
last_indexed 2025-12-07T15:34:47Z
_version_ 1850886105389334528