Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions

Burchnall's method to invert the Feldheim-Watson linearization formula for the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its q-analogue. The resulting expansion formulas are made explicit for several families corresponding to measures with infinite suppo...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Ismail, M.E.H., Koelink, E., Román, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209778
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions / M.E.H. Ismail, E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209778
record_format dspace
spelling Ismail, M.E.H.
Koelink, E.
Román, P.
2025-11-26T12:18:22Z
2018
Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions / M.E.H. Ismail, E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C45; 33D45; 42C05; 37K10
arXiv: 1802.09190
https://nasplib.isofts.kiev.ua/handle/123456789/209778
https://doi.org/10.3842/SIGMA.2018.072
Burchnall's method to invert the Feldheim-Watson linearization formula for the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its q-analogue. The resulting expansion formulas are made explicit for several families corresponding to measures with infinite support, including the Wilson and Askey-Wilson polynomials. An integrated version gives the possibility to give an alternate expression for orthogonal polynomials with respect to a modified weight. This gives expansions for polynomials, such as Hermite, Laguerre, Meixner, Charlier, Meixner-Pollaczek, and big q-Jacobi polynomials and big q-Laguerre polynomials. We show that one can find expansions for the orthogonal polynomials corresponding to the Toda-modification of the weight for the classical polynomials that correspond to known explicit solutions for the Toda lattice, i.e., for Hermite, Laguerre, Charlier, Meixner, Meixner-Pollaczek, and Krawtchouk polynomials.
Mourad Ismail acknowledges the research support and hospitality of Radboud University during his visits, which initiated this collaboration. Erik Koelink gratefully acknowledges the support of FaMAF as an invited professor at Universidad Nacional de Córdoba for a research visit. The work of Pablo Román was supported by Radboud Excellence Fellowship, CONICET grant PIP 112-200801-01533, FONCyT grant PICT 2014-3452, and by SeCyT-UNC. We thank a referee for useful advice.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
spellingShingle Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
Ismail, M.E.H.
Koelink, E.
Román, P.
title_short Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
title_full Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
title_fullStr Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
title_full_unstemmed Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions
title_sort generalized burchnall-type identities for orthogonal polynomials and expansions
author Ismail, M.E.H.
Koelink, E.
Román, P.
author_facet Ismail, M.E.H.
Koelink, E.
Román, P.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Burchnall's method to invert the Feldheim-Watson linearization formula for the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its q-analogue. The resulting expansion formulas are made explicit for several families corresponding to measures with infinite support, including the Wilson and Askey-Wilson polynomials. An integrated version gives the possibility to give an alternate expression for orthogonal polynomials with respect to a modified weight. This gives expansions for polynomials, such as Hermite, Laguerre, Meixner, Charlier, Meixner-Pollaczek, and big q-Jacobi polynomials and big q-Laguerre polynomials. We show that one can find expansions for the orthogonal polynomials corresponding to the Toda-modification of the weight for the classical polynomials that correspond to known explicit solutions for the Toda lattice, i.e., for Hermite, Laguerre, Charlier, Meixner, Meixner-Pollaczek, and Krawtchouk polynomials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209778
citation_txt Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions / M.E.H. Ismail, E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT ismailmeh generalizedburchnalltypeidentitiesfororthogonalpolynomialsandexpansions
AT koelinke generalizedburchnalltypeidentitiesfororthogonalpolynomialsandexpansions
AT romanp generalizedburchnalltypeidentitiesfororthogonalpolynomialsandexpansions
first_indexed 2025-12-07T17:54:28Z
last_indexed 2025-12-07T17:54:28Z
_version_ 1850886105415548928