The Chevalley-Weil Formula for Orbifold Curves

In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold cur...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Author: Candelori, L.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209779
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Chevalley-Weil Formula for Orbifold Curves / L. Candelori // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold curves. We then specialize the formula to the case when the base orbifold curve is the (reduced) modular orbifold. As an application of this latter formula, we decompose the canonical representations of modular curves of full, prime level and of Fermat curves of arbitrary exponent.
ISSN:1815-0659