The Chevalley-Weil Formula for Orbifold Curves

In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Candelori, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209779
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Chevalley-Weil Formula for Orbifold Curves / L. Candelori // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209779
record_format dspace
spelling Candelori, L.
2025-11-26T12:18:48Z
2018
The Chevalley-Weil Formula for Orbifold Curves / L. Candelori // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14H30; 14H37; 14H45
arXiv: 1712.02437
https://nasplib.isofts.kiev.ua/handle/123456789/209779
https://doi.org/10.3842/SIGMA.2018.071
In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold curves. We then specialize the formula to the case when the base orbifold curve is the (reduced) modular orbifold. As an application of this latter formula, we decompose the canonical representations of modular curves of full, prime level and of Fermat curves of arbitrary exponent.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Chevalley-Weil Formula for Orbifold Curves
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Chevalley-Weil Formula for Orbifold Curves
spellingShingle The Chevalley-Weil Formula for Orbifold Curves
Candelori, L.
title_short The Chevalley-Weil Formula for Orbifold Curves
title_full The Chevalley-Weil Formula for Orbifold Curves
title_fullStr The Chevalley-Weil Formula for Orbifold Curves
title_full_unstemmed The Chevalley-Weil Formula for Orbifold Curves
title_sort chevalley-weil formula for orbifold curves
author Candelori, L.
author_facet Candelori, L.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold curves. We then specialize the formula to the case when the base orbifold curve is the (reduced) modular orbifold. As an application of this latter formula, we decompose the canonical representations of modular curves of full, prime level and of Fermat curves of arbitrary exponent.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209779
citation_txt The Chevalley-Weil Formula for Orbifold Curves / L. Candelori // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT candeloril thechevalleyweilformulafororbifoldcurves
AT candeloril chevalleyweilformulafororbifoldcurves
first_indexed 2025-12-07T21:11:00Z
last_indexed 2025-12-07T21:11:00Z
_version_ 1850886169257050112