The Chevalley-Weil Formula for Orbifold Curves
In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold cur...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209779 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Chevalley-Weil Formula for Orbifold Curves / L. Candelori // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209779 |
|---|---|
| record_format |
dspace |
| spelling |
Candelori, L. 2025-11-26T12:18:48Z 2018 The Chevalley-Weil Formula for Orbifold Curves / L. Candelori // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H30; 14H37; 14H45 arXiv: 1712.02437 https://nasplib.isofts.kiev.ua/handle/123456789/209779 https://doi.org/10.3842/SIGMA.2018.071 In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold curves. We then specialize the formula to the case when the base orbifold curve is the (reduced) modular orbifold. As an application of this latter formula, we decompose the canonical representations of modular curves of full, prime level and of Fermat curves of arbitrary exponent. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications The Chevalley-Weil Formula for Orbifold Curves Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The Chevalley-Weil Formula for Orbifold Curves |
| spellingShingle |
The Chevalley-Weil Formula for Orbifold Curves Candelori, L. |
| title_short |
The Chevalley-Weil Formula for Orbifold Curves |
| title_full |
The Chevalley-Weil Formula for Orbifold Curves |
| title_fullStr |
The Chevalley-Weil Formula for Orbifold Curves |
| title_full_unstemmed |
The Chevalley-Weil Formula for Orbifold Curves |
| title_sort |
chevalley-weil formula for orbifold curves |
| author |
Candelori, L. |
| author_facet |
Candelori, L. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In the 1930s, Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article, we prove an analogous Chevalley-Weil formula for ramified Galois covers of orbifold curves. We then specialize the formula to the case when the base orbifold curve is the (reduced) modular orbifold. As an application of this latter formula, we decompose the canonical representations of modular curves of full, prime level and of Fermat curves of arbitrary exponent.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209779 |
| citation_txt |
The Chevalley-Weil Formula for Orbifold Curves / L. Candelori // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT candeloril thechevalleyweilformulafororbifoldcurves AT candeloril chevalleyweilformulafororbifoldcurves |
| first_indexed |
2025-12-07T21:11:00Z |
| last_indexed |
2025-12-07T21:11:00Z |
| _version_ |
1850886169257050112 |