The Solution of Hilbert's Fifth Problem for Transitive Groupoids

In the following paper, we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter, which may be considered generalizations of Hilbert's fifth problem to this context. Most notably, we present a "s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Raźny, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209780
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Solution of Hilbert's Fifth Problem for Transitive Groupoids / P. Raźny // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209780
record_format dspace
spelling Raźny, P.
2025-11-26T12:19:12Z
2018
The Solution of Hilbert's Fifth Problem for Transitive Groupoids / P. Raźny // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 12 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22A22
arXiv: 1805.03066
https://nasplib.isofts.kiev.ua/handle/123456789/209780
https://doi.org/10.3842/SIGMA.2018.070
In the following paper, we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter, which may be considered generalizations of Hilbert's fifth problem to this context. Most notably, we present a "solution" to the problem for proper transitive groupoids and transitive groupoids with compact source fibers.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Solution of Hilbert's Fifth Problem for Transitive Groupoids
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Solution of Hilbert's Fifth Problem for Transitive Groupoids
spellingShingle The Solution of Hilbert's Fifth Problem for Transitive Groupoids
Raźny, P.
title_short The Solution of Hilbert's Fifth Problem for Transitive Groupoids
title_full The Solution of Hilbert's Fifth Problem for Transitive Groupoids
title_fullStr The Solution of Hilbert's Fifth Problem for Transitive Groupoids
title_full_unstemmed The Solution of Hilbert's Fifth Problem for Transitive Groupoids
title_sort solution of hilbert's fifth problem for transitive groupoids
author Raźny, P.
author_facet Raźny, P.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In the following paper, we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter, which may be considered generalizations of Hilbert's fifth problem to this context. Most notably, we present a "solution" to the problem for proper transitive groupoids and transitive groupoids with compact source fibers.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209780
citation_txt The Solution of Hilbert's Fifth Problem for Transitive Groupoids / P. Raźny // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT raznyp thesolutionofhilbertsfifthproblemfortransitivegroupoids
AT raznyp solutionofhilbertsfifthproblemfortransitivegroupoids
first_indexed 2025-12-03T16:22:59Z
last_indexed 2025-12-03T16:22:59Z
_version_ 1850885993254617088