The Solution of Hilbert's Fifth Problem for Transitive Groupoids
In the following paper, we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter, which may be considered generalizations of Hilbert's fifth problem to this context. Most notably, we present a "s...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | Raźny, P. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209780 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Solution of Hilbert's Fifth Problem for Transitive Groupoids / P. Raźny // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids
von: Raźny, P.
Veröffentlicht: (2017) -
The Solution of the Hilbert's Sixth Problem
von: V. A. Vyshinskij
Veröffentlicht: (2015) -
On theory of multivalent solutions for Riemann-Hilbert problem
von: V. I. Ryazanov
Veröffentlicht: (2015) -
On theory of multivalent solutions for Riemann Hilbert problem
von: Ryazanov, V.
Veröffentlicht: (2015) -
On the regular solutions of the Riemann–Hilbert problem for the Betrami equations
von: A. S. Efimushkin, et al.
Veröffentlicht: (2014)