Loop Models and K-Theory
This is a review/announcement of results concerning the connection between certain exactly solvable two-dimensional models of statistical mechanics, namely loop models, and the equivariant K-theory of the cotangent bundle of the Grassmannian. We interpret various concepts from integrable systems (R-...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2018 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2018
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/209781 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Loop Models and K-Theory / P. Zinn-Justin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 40 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | This is a review/announcement of results concerning the connection between certain exactly solvable two-dimensional models of statistical mechanics, namely loop models, and the equivariant K-theory of the cotangent bundle of the Grassmannian. We interpret various concepts from integrable systems (R-matrix, partition function on a finite domain) in geometric terms. As a byproduct, we provide explicit formulae for K-classes of various coherent sheaves, including structure and (conjecturally) square roots of canonical sheaves and canonical sheaves of conormal varieties of Schubert varieties.
|
|---|---|
| ISSN: | 1815-0659 |