Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes

We construct 2ⁿ+1 solutions to the Yang-Baxter equation associated with the quantum affine algebras Uq(A⁽¹⁾ₙ₋₁), Uq(A⁽²⁾₂ₙ), Uq(C⁽¹⁾ₙ), and Uq(D⁽²⁾ₙ₊₁). They act on the Fock spaces of an arbitrary mixture of particles and holes in general. Our method is based on new reductions of the tetrahedron equ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Kuniba, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209783
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes / A. Kuniba // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We construct 2ⁿ+1 solutions to the Yang-Baxter equation associated with the quantum affine algebras Uq(A⁽¹⁾ₙ₋₁), Uq(A⁽²⁾₂ₙ), Uq(C⁽¹⁾ₙ), and Uq(D⁽²⁾ₙ₊₁). They act on the Fock spaces of an arbitrary mixture of particles and holes in general. Our method is based on new reductions of the tetrahedron equation and an embedding of the quantum affine algebras into n copies of the q-oscillator algebra, which admits an automorphism interchanging particles and holes.
ISSN:1815-0659