Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes

We construct 2ⁿ+1 solutions to the Yang-Baxter equation associated with the quantum affine algebras Uq(A⁽¹⁾ₙ₋₁), Uq(A⁽²⁾₂ₙ), Uq(C⁽¹⁾ₙ), and Uq(D⁽²⁾ₙ₊₁). They act on the Fock spaces of an arbitrary mixture of particles and holes in general. Our method is based on new reductions of the tetrahedron equ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Kuniba, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209783
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes / A. Kuniba // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209783
record_format dspace
spelling Kuniba, A.
2025-11-26T12:20:48Z
2018
Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes / A. Kuniba // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81R50; 17B37; 16
arXiv: 1803.01586
https://nasplib.isofts.kiev.ua/handle/123456789/209783
https://doi.org/10.3842/SIGMA.2018.067
We construct 2ⁿ+1 solutions to the Yang-Baxter equation associated with the quantum affine algebras Uq(A⁽¹⁾ₙ₋₁), Uq(A⁽²⁾₂ₙ), Uq(C⁽¹⁾ₙ), and Uq(D⁽²⁾ₙ₊₁). They act on the Fock spaces of an arbitrary mixture of particles and holes in general. Our method is based on new reductions of the tetrahedron equation and an embedding of the quantum affine algebras into n copies of the q-oscillator algebra, which admits an automorphism interchanging particles and holes.
The author thanks the organizers of the MATRIX Program Non-Equilibrium Systems and Special Functions at the University of Melbourne (Creswick, 8 January 2018 – 2 February 2018), where a part of this work was done. This work is supported by Grants-in-Aid for Scientific Research No. 15K13429 from JSPS.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes
spellingShingle Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes
Kuniba, A.
title_short Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes
title_full Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes
title_fullStr Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes
title_full_unstemmed Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes
title_sort tetrahedron equation and quantum r matrices for q-oscillator representations mixing particles and holes
author Kuniba, A.
author_facet Kuniba, A.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct 2ⁿ+1 solutions to the Yang-Baxter equation associated with the quantum affine algebras Uq(A⁽¹⁾ₙ₋₁), Uq(A⁽²⁾₂ₙ), Uq(C⁽¹⁾ₙ), and Uq(D⁽²⁾ₙ₊₁). They act on the Fock spaces of an arbitrary mixture of particles and holes in general. Our method is based on new reductions of the tetrahedron equation and an embedding of the quantum affine algebras into n copies of the q-oscillator algebra, which admits an automorphism interchanging particles and holes.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209783
citation_txt Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes / A. Kuniba // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT kunibaa tetrahedronequationandquantumrmatricesforqoscillatorrepresentationsmixingparticlesandholes
first_indexed 2025-12-07T13:42:56Z
last_indexed 2025-12-07T13:42:56Z
_version_ 1850885993260908544