Quantum Klein Space and Superspace
We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate alge...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209784 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2,2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N=1 supersetting.
|
|---|---|
| ISSN: | 1815-0659 |