Quantum Klein Space and Superspace

We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate alge...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Fioresi, R., Latini, E., Marrani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209784
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2,2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N=1 supersetting.
ISSN:1815-0659