Quantum Klein Space and Superspace

We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate alge...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Fioresi, R., Latini, E., Marrani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209784
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209784
record_format dspace
spelling Fioresi, R.
Latini, E.
Marrani, A.
2025-11-26T12:22:45Z
2018
Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B37; 16T20; 20G42; 81R50; 17B60
arXiv: 1705.01755
https://nasplib.isofts.kiev.ua/handle/123456789/209784
https://doi.org/10.3842/SIGMA.2018.066
We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2,2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N=1 supersetting.
We would like to thank Professors Francesco Bonechi, Meng-Kiat Chuah, and Fabio Gavarini for useful discussions and helpful comments. We also wish to thank our anonymous referees for helpful comments, which have helped us to improve the clarity of our paper. A.M. wishes to thank the Department of Mathematics at the University of Bologna for the kind hospitality during the realization of this work.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quantum Klein Space and Superspace
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum Klein Space and Superspace
spellingShingle Quantum Klein Space and Superspace
Fioresi, R.
Latini, E.
Marrani, A.
title_short Quantum Klein Space and Superspace
title_full Quantum Klein Space and Superspace
title_fullStr Quantum Klein Space and Superspace
title_full_unstemmed Quantum Klein Space and Superspace
title_sort quantum klein space and superspace
author Fioresi, R.
Latini, E.
Marrani, A.
author_facet Fioresi, R.
Latini, E.
Marrani, A.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2,2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N=1 supersetting.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209784
citation_txt Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ.
work_keys_str_mv AT fioresir quantumkleinspaceandsuperspace
AT latinie quantumkleinspaceandsuperspace
AT marrania quantumkleinspaceandsuperspace
first_indexed 2025-12-07T15:20:12Z
last_indexed 2025-12-07T15:20:12Z
_version_ 1850886105411354624