Quantum Klein Space and Superspace
We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate alge...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209784 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209784 |
|---|---|
| record_format |
dspace |
| spelling |
Fioresi, R. Latini, E. Marrani, A. 2025-11-26T12:22:45Z 2018 Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 16T20; 20G42; 81R50; 17B60 arXiv: 1705.01755 https://nasplib.isofts.kiev.ua/handle/123456789/209784 https://doi.org/10.3842/SIGMA.2018.066 We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2,2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N=1 supersetting. We would like to thank Professors Francesco Bonechi, Meng-Kiat Chuah, and Fabio Gavarini for useful discussions and helpful comments. We also wish to thank our anonymous referees for helpful comments, which have helped us to improve the clarity of our paper. A.M. wishes to thank the Department of Mathematics at the University of Bologna for the kind hospitality during the realization of this work. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Quantum Klein Space and Superspace Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Quantum Klein Space and Superspace |
| spellingShingle |
Quantum Klein Space and Superspace Fioresi, R. Latini, E. Marrani, A. |
| title_short |
Quantum Klein Space and Superspace |
| title_full |
Quantum Klein Space and Superspace |
| title_fullStr |
Quantum Klein Space and Superspace |
| title_full_unstemmed |
Quantum Klein Space and Superspace |
| title_sort |
quantum klein space and superspace |
| author |
Fioresi, R. Latini, E. Marrani, A. |
| author_facet |
Fioresi, R. Latini, E. Marrani, A. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2,2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N=1 supersetting.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209784 |
| citation_txt |
Quantum Klein Space and Superspace / R. Fioresi, E. Latini, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 69 назв. — англ. |
| work_keys_str_mv |
AT fioresir quantumkleinspaceandsuperspace AT latinie quantumkleinspaceandsuperspace AT marrania quantumkleinspaceandsuperspace |
| first_indexed |
2025-12-07T15:20:12Z |
| last_indexed |
2025-12-07T15:20:12Z |
| _version_ |
1850886105411354624 |